Spinor-valued and Clifford algebra-valued harmonic polynomials

Yasushi Homma
Department of Mathematical Sciences, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan

Received 27 July 1999; received in revised form 17 April 2000

Abstract

We give decompositions of the spinor-valued and the Clifford algebra-valued harmonic polynomials on \mathbf{R}^{n}. In order to do so, we consider some differential complexes and show that these are exact. As a corollary, we have Poincaré lemma for harmonic polynomials. Besides, we prove that each component of the decompositions is an irreducible representation space with respect to $\operatorname{Spin}(n)$. © 2001 Elsevier Science B.V. All rights reserved.

MSC: 43A85; 43A90; 58J05

Subj. Class.: Spinors; Twistors
Keywords: Clifford-valued polynomials; Spin(n)-modules; Invariant operators

1. Introduction

Spherical harmonic polynomials or spherical harmonics as building blocks for analysis on the sphere are traditionally an indispensable tool in mathematical physics. Recently, the interest was shifted from functions space on the sphere to spaces of sections of natural bundles. These spaces are representation spaces of $\operatorname{Spin}(n)$ and their irreducible components are often given by polynomial solutions of invariant differential operators. For example, spaces of spinor-valued functions on the sphere are spaces of the so-called spherical monogenics. They are spinor-valued polynomial solutions of the Dirac equations on $\mathbf{R}^{n}[6,8,10,14]$. The Clifford algebra-valued fields and other examples are studied in [4,5,7-9,11]. In this paper, we give a new approach to analyze the Clifford algebra-valued or the exterior algebra-valued fields on the sphere.

The space of functions on S^{n-1} is isomorphic to the space of harmonic polynomials on \mathbf{R}^{n}. Similarly, we can regard the sections of the spinor bundle (resp. the Clifford bundle)

[^0]0393-0440/01/\$ - see front matter © 2001 Elsevier Science B.V. All rights reserved.
PII: S0393-0440(00)00045-0
as the spinor-valued (resp. the Clifford algebra-valued) harmonic polynomials. Let H^{q} be the space of the harmonic polynomials with degree q on \mathbf{R}^{n}. We consider $\sum H^{q} \otimes W_{n}$ and $\sum H^{q} \otimes \mathbf{C} l_{n}$, where W_{n} is the space of spinors and $\mathbf{C} l_{n}$ is the Clifford algebra. Trautman [14] gives a geometrical decomposition of $H^{q} \otimes W_{n}$ by using the Dirac operator D and the algebraic operator x, where the important tool to analyze $H^{q} \otimes W_{n}$ is the spinor complex $\left(H^{*} \otimes W_{n}, D\right)$. We consider an analogue of the spinor complex for the Clifford algebra-valued harmonic polynomials. Since $\mathbf{C} l_{n}$ is isomorphic to the exterior algebra $\sum \Lambda_{\mathbf{C}}^{p}\left(\mathbf{R}^{n}\right)$, we use the differential operators d and d^{*} instead of the Dirac operator and have the de Rham complex $\left(H^{*} \otimes \Lambda_{\mathbf{C}}^{*}\left(\mathbf{R}^{n}\right)\right.$, d) for harmonic polynomials. To show the exactness of this complex is more complicated than the spinor case. So we give a geometric decomposition of $H^{q} \otimes \Lambda_{\mathbf{C}}^{p}\left(\mathbf{R}^{n}\right)$ first. Then we have the exactness of the de Rham complex for harmonic polynomials. Since the operator d and d^{*} are invariant operators, we prove that each component of our decompositions is irreducible with respect to $\operatorname{Spin}(n)$.

Sections 2 and 3 are preliminaries. In Section 2, we describe the Clifford algebra and some representations of $\operatorname{Spin}(n)$. In Section 3, we have the Clifford bundle and the spinor bundle on the sphere and give trivializations of these bundles. Then, we can regard the sections of these bundle as the spinor-valued and the Clifford algebra-valued harmonic polynomials on \mathbf{R}^{n}. In Section 4, we present Trautman's theory for the spinor-valued harmonic polynomials. Section 5 is the main of this paper. We study the Clifford algebra-valued or the exterior algebra-valued harmonic polynomials. We have the differential operators d and d^{*} and the algebraic operators $i(x)$ and $-x_{\wedge}$ for them. By using these operators, we decompose $H^{q} \otimes$ $\Lambda_{\mathbf{C}}^{p}\left(\mathbf{R}^{n}\right)$ and show that the de Rham complex for harmonic polynomials is exact. In Section 6 , we present some results for the representation of the Lie algebra $\mathfrak{s p i n}(n) \otimes \mathbf{C} \simeq \mathfrak{s o}(n, \mathbf{C})$ by using the Clifford algebra. In Section 7, we verify that our geometrical decompositions correspond to the irreducible ones with respect to $\operatorname{Spin}(n)$.

2. The Clifford algebra and the spinor space

Let \mathbf{R}^{n} be the n-dimensional Euclidean space with the orthonormal basis $\left\{e_{k}\right\}_{k=1}^{n}$. Then, we have the complex Clifford algebra $\mathbf{C} l_{n}$, where the relations among $\left\{e_{k}\right\}_{k=1}^{n}$ are given by

$$
\begin{equation*}
e_{k} e_{l}+e_{l} e_{k}=-2 \delta_{k l} . \tag{2.1}
\end{equation*}
$$

The following vector space isomorphism is well known:

$$
\begin{equation*}
\mathbf{C} l_{n} \ni e_{k_{1}} e_{k_{2}} \cdots e_{k_{p}} \mapsto e_{k_{1}} \wedge e_{k_{2}} \wedge \cdots \wedge e_{k_{p}} \in \sum_{p} \Lambda_{\mathbf{C}}^{p}\left(\mathbf{R}^{n}\right) \tag{2.2}
\end{equation*}
$$

where $\sum \Lambda_{\mathbf{C}}^{p}\left(\mathbf{R}^{n}\right)$ is the vector space of the complex exterior algebra associated to \mathbf{R}^{n}. Besides, $\mathbf{C} l_{n}$ has the decomposition to the even and the odd parts, $\mathbf{C} l_{n}=\mathbf{C} l_{n}^{0} \oplus \mathbf{C} l_{n}^{1}$. Here $\mathbf{C} l_{n}^{i}$ is isomorphic to $\sum_{k} \Lambda_{\mathbf{C}}^{2 k+i}\left(\mathbf{R}^{n}\right)$.

We shall prepare two homomorphisms on the Clifford algebras [1]. First, we know that the sub-algebra $\mathbf{C} l_{n}^{0}$ is isomorphic to $\mathbf{C} l_{n-1}$ as an algebra by the map $j: \mathbf{C} l_{n-1} \xrightarrow{\simeq} \mathbf{C} l_{n}^{0}$ which extends the map $j\left(e_{k}\right)=e_{n} e_{k}$ for e_{k} in \mathbf{R}^{n-1}. Next, from the natural inclusion
$i: \mathbf{R}^{n-1} \rightarrow \mathbf{R}^{n}$, we have its extension, the map $i: \mathbf{C} l_{n-1} \rightarrow \mathbf{C} l_{n}$. Here, we remark that the map i coincides with j on $\mathbf{C} l_{n-1}^{0}$.

Now, we investigate the spinor representation $\left(\Delta_{n}, W_{n}\right)$ and adjoint representation $\left(\operatorname{Ad}_{n}, \mathbf{C} l_{n}\right)$ of $\operatorname{Spin}(n)$, where $\operatorname{Spin}(n)$ is the spin group in $\mathbf{C} l_{n}$. The spinor representation $\left(\Delta_{n}, W_{n}\right)$ is the restriction of an irreducible $\mathbf{C} l_{n}$-module to $\operatorname{Spin}(n)$. For $n=2 m$, $\left(\Delta_{2 m}, W_{2 m}\right)$ decomposes as the direct sum of two inequivalent irreducible representations $\left(\Delta_{2 m}^{+}, W_{2 m}^{+}\right)$and $\left(\Delta_{2 m}^{-}, W_{2 m}^{-}\right)$. If we restrict the spinor representation of $\operatorname{Spin}(n)$ to its subgroup $\operatorname{Spin}(n-1)$, we have spinor representations of $\operatorname{Spin}(n-1)$ [6]:

$$
\begin{align*}
& \left(\Delta_{2 m}^{ \pm} \mid \operatorname{Spin}(2 m-1), W_{2 m}^{ \pm}\right) \simeq\left(\Delta_{2 m-1}, W_{2 m-1}\right) \tag{2.3}\\
& \left(\left.\Delta_{2 m+1}\right|_{\operatorname{Spin}(2 m)}, W_{2 m+1}\right) \simeq\left(\Delta_{2 m}, W_{2 m}\right) \tag{2.4}
\end{align*}
$$

These isomorphisms are important to trivialize the spinor bundle on S^{n-1}.
The adjoint representation $\left(\operatorname{Ad}_{n}, \mathbf{C} l_{n}\right)$ is given by

$$
\begin{equation*}
\operatorname{Spin}(n) \times \mathbf{C} l_{n} \ni(g, \psi) \mapsto \operatorname{Ad}_{n}(g) \psi=g \psi g^{-1} \in \mathbf{C} l_{n} \tag{2.5}
\end{equation*}
$$

Under the isomorphism $\mathbf{C} l_{n} \simeq \sum \Lambda_{\mathbf{C}}^{p}\left(\mathbf{R}^{n}\right)$, the vector space $\Lambda_{\mathbf{C}}^{p}\left(\mathbf{R}^{n}\right)$ is invariant. Hence, so is $\mathbf{C} l_{n}^{i}$ for $i=0,1$. We denote the representation of $\operatorname{Spin}(n)$ on $\mathbf{C} l_{n}^{i}$ by Ad_{n}^{i}. The following lemma is an analogue of (2.3) and (2.4) for the Clifford case.

Lemma 2.1. If we think of $\operatorname{Spin}(n-1)$ as a subgroup of Spin(n) by the map i, then $\Lambda_{\mathbf{C}}^{p}\left(\mathbf{R}^{n}\right)$ is isomorphic to $\Lambda_{\mathbf{C}}^{p}\left(\mathbf{R}^{n-1}\right) \oplus \Lambda_{\mathbf{C}}^{p-1}\left(\mathbf{R}^{n-1}\right)$ as a representation space of $\operatorname{Spin}(n-1)$. In particular, $\left.\operatorname{Ad}_{n}^{i}\right|_{\operatorname{Spin}(n-1)}$ is equivalent to Ad_{n-1}.

Proof. For $p=2 s$, restricting the domain of the map j to $\Lambda_{\mathbf{C}}^{p}\left(\mathbf{R}^{n-1}\right) \oplus \Lambda_{\mathbf{C}}^{p-1}\left(\mathbf{R}^{n-1}\right)$, we have an isomorphism $j: \Lambda_{\mathbf{C}}^{p}\left(\mathbf{R}^{n-1}\right) \oplus \Lambda_{\mathbf{C}}^{p-1}\left(\mathbf{R}^{n-1}\right) \rightarrow \Lambda_{\mathbf{C}}^{p}\left(\mathbf{R}^{n}\right)$ as a vector space and show that the following diagram commutes for any h in $\operatorname{Spin}(n-1)$:

$$
\begin{align*}
& \Lambda_{\mathrm{C}}^{p}\left(\mathbf{R}^{n-1}\right) \oplus \Lambda_{\mathrm{C}}^{p-1}\left(\mathbf{R}^{n-1}\right) \xrightarrow{j} \Lambda_{\mathrm{C}}^{p}\left(\mathbf{R}^{n}\right) \\
& \quad{ }_{\mathrm{Ad}}^{n-1}(h) \downarrow \\
& \Lambda_{\mathrm{C}}^{p}\left(\mathbf{R}^{n-1}\right) \oplus \Lambda_{\mathrm{C}}^{p-1}\left(\mathbf{R}^{n-1}\right) \xrightarrow{j}(h) \\
& \Lambda_{\mathrm{C}}^{p}\left(\mathbf{R}^{n}\right) . \tag{2.6}
\end{align*}
$$

To prove the case $p=2 s+1$, we use another isomorphism,

$$
\begin{equation*}
e_{n} j: \mathbf{C} l_{n-1} \ni \psi \mapsto e_{n} \cdot j(\psi) \in \mathbf{C} l_{n}^{1} \tag{2.7}
\end{equation*}
$$

If we replace j by $e_{n} j$ on the above diagram (2.6), then we show that it also commutes.

3. Homogeneous vector bundles on sphere

In this section, we shall describe homogeneous vector bundles on S^{n-1}. We realize S^{n-1} as an orbit space of $\operatorname{Spin}(n)$ with base point e_{n} in \mathbf{R}^{n}. Then S^{n-1} is a homogeneous space
$\operatorname{Spin}(n) / \operatorname{Spin}(n-1)$ and its spin structure is given by

$$
\begin{equation*}
\operatorname{Spin}(n) \ni g \mapsto x:=g e_{n} g^{-1} \in S^{n-1}=\frac{\operatorname{Spin}(n)}{\operatorname{Spin}(n-1)}, \tag{3.1}
\end{equation*}
$$

where the total space is $\operatorname{Spin}(n)$.
We shall construct homogeneous vector bundles on S^{n-1}. First, we consider the Clifford bundle $\mathbf{C l}\left(S^{n-1}\right):=\operatorname{Spin}(n) \times{ }_{\operatorname{Ad}_{n-1}} \mathbf{C} l_{n-1}$. We know that $\mathbf{C l}\left(S^{n-1}\right)$ is isomorphic to the bundle of differential forms, $\sum A_{\mathbf{C}}^{p}\left(S^{n-1}\right)$. Here, $A_{\mathbf{C}}^{p}\left(S^{n-1}\right)$ is the bundle of p-forms on S^{n-1}, which is the homogeneous vector bundle corresponding the representation on $\Lambda_{\mathbf{C}}^{p}\left(\mathbf{R}^{n-1}\right)$. The sections of $\mathbf{C l}\left(S^{n-1}\right)$ are given by the $\operatorname{Spin}(n-1)$-equivariant functions from $\operatorname{Spin}(n)$ to $\mathbf{C} l_{n-1}$:

$$
\begin{align*}
C^{\infty}\left(\mathbf{C} l\left(S^{n-1}\right)\right) & =\left\{\Psi: \operatorname{Spin}(n) \rightarrow \mathbf{C} l_{n-1} \mid \Psi(g h)\right. \\
& \left.=h^{-1} \Psi(g) h \quad \text { for } h \in \operatorname{Spin}(n-1)\right\} \tag{3.2}
\end{align*}
$$

If we define the action of $\operatorname{Spin}(n)$ on $C^{\infty}\left(\mathbf{C l}\left(S^{n-1}\right)\right)$ by $\left(g_{0} \Psi\right)(g)=\Psi\left(g_{0}^{-1} g\right)$ for g_{0} in $\operatorname{Spin}(n)$, then we obtain a unitary representation of $\operatorname{Spin}(n)$ on $L^{2}\left(\mathbf{C l}\left(S^{n-1}\right)\right)$.

We shall trivialize $\mathbf{C l}\left(S^{n-1}\right)$. From Lemma 2.1, we know that $\mathbf{C l}\left(S^{n-1}\right)$ is isomorphic to $\operatorname{Spin}(n) \times{ }_{\mathrm{Ad}_{n}^{i}} \mathbf{C} l_{n}^{i}$ for $i=0,1$ as a homogeneous vector bundle. Then, we have the bundle isomorphisms,

$$
\begin{equation*}
\operatorname{Spin}(n) \times_{\mathrm{Ad}_{n}^{i}} \mathbf{C} l_{n}^{i} \ni[g, \Psi] \mapsto\left(g e_{n} g^{-1}, g \Psi g^{-1}\right) \in S^{n-1} \times \mathbf{C} l_{n}^{i} \tag{3.3}
\end{equation*}
$$

For $\Psi(g)$ in $C^{\infty}\left(\mathbf{C} l\left(S^{n-1}\right)\right)$, we define a $\mathbf{C} l_{n}^{i}$-valued function $\psi(x)$ on S^{n-1} by $\psi(x):=$ $g \Psi(g) g^{-1}$. Then we regard $C^{\infty}\left(\mathbf{C l}\left(S^{n-1}\right)\right)$ as the space of the $\mathbf{C} l_{n}^{i}$-valued functions on S^{n-1} and see that the action of $\operatorname{Spin}(n)$ is given by

$$
\begin{equation*}
\operatorname{Spin}(n) \times C^{\infty}\left(\mathbf{C} l\left(S^{n-1}\right)\right) \ni\left(g_{0}, \psi(x)\right) \mapsto g_{0} \psi\left(g_{0}^{-1} x g_{0}\right) g_{0}^{-1} \in C^{\infty}\left(\mathbf{C} l\left(S^{n-1}\right)\right) \tag{3.4}
\end{equation*}
$$

Remark 3.1. From Lemma 2.1, we can show that

$$
\begin{equation*}
A_{\mathbf{C}}^{p}\left(S^{n-1}\right) \oplus A_{\mathbf{C}}^{p-1}\left(S^{n-1}\right) \simeq S^{n-1} \times \Lambda_{\mathbf{C}}^{p}\left(\mathbf{R}^{n}\right) \tag{3.5}
\end{equation*}
$$

Of course, $A_{\mathbf{C}}^{p}\left(S^{n-1}\right)$ is not always trivial.
We can also trivialize the spinor bundle $\mathbf{S}\left(S^{n-1}\right):=\operatorname{Spin}(n) \times_{\Delta_{n-1}} W_{n-1}$ by using (2.3) and (2.4) [6]. It allow us to think of the spinor sections as the spinor-valued functions on S^{n-1}. We see that the action of $\operatorname{Spin}(n)$ on the spinor-valued functions is given by

$$
\begin{equation*}
\operatorname{Spin}(n) \times C^{\infty}\left(\mathbf{S}\left(S^{n-1}\right)\right) \ni\left(g_{0}, \phi(x)\right) \mapsto g_{0} \phi\left(g_{0}^{-1} x g_{0}\right) \in C^{\infty}\left(\mathbf{S}\left(S^{n-1}\right)\right) \tag{3.6}
\end{equation*}
$$

From the above discussions, we deal with the trivial bundles $S^{n-1} \times \mathbf{C} l_{n}$ and $S^{n-1} \times W_{n}$. The space of functions on S^{n-1} is isomorphic to $\sum H^{q}$ as a representation space of $\operatorname{Spin}(n)$, where we denote the space of the harmonic polynomials with polynomial's degree q on \mathbf{R}^{n} by H^{q}. Considering the tensor representations on $H^{q} \otimes \mathbf{C} l_{n}^{i}$ and $H^{q} \otimes W_{n}$, we see that the actions on these spaces are nothing else but (3.4) and (3.6), respectively.

Proposition 3.2. We have the following isomorphisms as representation spaces of $\operatorname{Spin}(n)$:

1. The Clifford case:

$$
\begin{equation*}
L^{2}\left(\mathbf{C} l\left(S^{n-1}\right)\right) \simeq \sum_{q \geq 0} H^{q} \otimes \mathbf{C} l_{n}^{i} \quad \text { for } i=0 \text { or } 1 . \tag{3.7}
\end{equation*}
$$

2. The spinor case:

$$
\begin{equation*}
L^{2}\left(\mathbf{S}\left(S^{2 m}\right)\right) \simeq \sum_{q \geq 0} H^{q} \otimes W_{2 m+1}, \quad L^{2}\left(\mathbf{S}\left(S^{2 m-1}\right)\right) \simeq \sum_{q \geq 0} H^{q} \otimes W_{2 m}^{ \pm} . \tag{3.8}
\end{equation*}
$$

4. Spinor-valued harmonic polynomials

In this section, we give some results for the spinor-valued harmonic polynomials. Let S^{q} be the space of the polynomials with degree q on \mathbf{R}^{n}. The spaces S^{q} and H^{q} have the inner product defined by

$$
\begin{equation*}
(f(x), g(x))_{S}=\left(\sum_{\alpha} f^{\alpha} x_{\alpha}, \sum_{\beta} g^{\beta} x_{\beta}\right)_{S}:=\sum \alpha!f^{\alpha} \bar{g}^{\alpha} . \tag{4.1}
\end{equation*}
$$

This inner product satisfies that $\left(\partial / \partial x_{k} f, g\right)_{S}=\left(f, x_{k} g\right)_{S}$ for any k. On the other hand, there is an inner product $(\cdot, \cdot)_{W}$ on W_{n} such that $\left(e_{k} v, w\right)_{W}=-\left(v, e_{k} w\right)_{W}$ for any k. Then we have the inner product (\cdot, \cdot) on $\sum S^{q} \otimes W_{n}$ and $\sum H^{q} \otimes W_{n}$ such that ($\left.\mathrm{D} \phi, \phi^{\prime}\right)=$ $-\left(\phi, x \phi^{\prime}\right)$. Here D is the Dirac operator on \mathbf{R}^{n} defined by $\sum e_{k} \partial / \partial x_{k}$ and x is the Clifford action by $\sum x_{k} e_{k}$.

Trautman [14] considers the following complex ($H^{*} \otimes W_{n}, \mathrm{D}$) to analyze $\sum H^{q} \otimes W_{n}$:

$$
\begin{equation*}
\cdots \xrightarrow{\mathrm{D}} H^{q+1} \otimes W_{n} \xrightarrow{\mathrm{D}} H^{q} \otimes W_{n} \xrightarrow{\mathrm{D}} H^{q-1} \otimes W_{n} \xrightarrow{\mathrm{D}} \cdots . \tag{4.2}
\end{equation*}
$$

If we have $\mathrm{D} \phi=0$ for $\phi \in H^{q} \otimes W_{n}$, then we show that $\sum \partial^{2} / \partial x_{k}^{2}(x \phi)=0$ and $\mathrm{D}(x \phi)=$ $(n-q) \phi$. Therefore, this complex is exact and the space $H^{q} \otimes W_{n}$ decomposes as the orthogonal direct sum $\operatorname{ker}^{q} \mathrm{D} \oplus x\left(\operatorname{ker}^{q-1} \mathrm{D}\right)$, where $\operatorname{ker}^{q} \mathrm{D}$ is the kernel of D on $H^{q} \otimes W_{n}$. In the following section, we try to apply this method to the Clifford algebra-valued harmonic polynomials.

5. Clifford algebra-valued harmonic polynomials

In this section, we discuss a geometrical decomposition of the $\mathbf{C} l_{n}$-valued harmonic polynomials on \mathbf{R}^{n}. Because of the isomorphism $\mathbf{C} l_{n} \simeq \sum \Lambda^{p}$, we consider $H_{p}^{q}:=H^{q} \otimes \Lambda^{p}$ and $S_{p}^{q}:=S^{q} \otimes \Lambda^{p}$. Here Λ^{p} denotes $\Lambda_{\mathbf{C}}^{p}\left(\mathbf{R}^{n}\right)$. We have the following algebraic operators on $\sum \Lambda^{p}$:

$$
\begin{equation*}
e_{k \wedge}: \Lambda^{p} \rightarrow \Lambda^{p+1}, \quad i\left(e_{k}\right): \Lambda^{p} \rightarrow \Lambda^{p-1} \tag{5.1}
\end{equation*}
$$

where $i\left(e_{k}\right)$ is the contraction by e_{k}. We can easily calculate the relations for $\left\{e_{k \wedge}\right\}_{k}$ and $\left\{i\left(e_{l}\right)\right\}_{l}$,

$$
\begin{align*}
& e_{k \wedge} e_{l \wedge}+e_{l \wedge} e_{k \wedge}=0 \tag{5.2}\\
& i\left(e_{k}\right) i\left(e_{l}\right)+i\left(e_{l}\right) i\left(e_{k}\right)=0, \tag{5.3}\\
& e_{k \wedge} i\left(e_{l}\right)+i\left(e_{l}\right) e_{k \wedge}=\delta_{k l} \tag{5.4}
\end{align*}
$$

We define some operators on $\sum S^{q} \otimes \Lambda^{p}$ as follows:

$$
\begin{align*}
& \mathrm{d}:=\sum_{k=1}^{n} \frac{\partial}{\partial x_{k}} e_{k \wedge}: S_{p}^{q} \rightarrow S_{p+1}^{q-1}, \tag{5.5}\\
& \mathrm{~d}^{*}:=-\sum_{k=1}^{n} \frac{\partial}{\partial x_{k}} i\left(e_{k}\right): S_{p}^{q} \rightarrow S_{p-1}^{q-1}, \tag{5.6}\\
& x_{\wedge}:=\sum_{k=1}^{n} x_{k} e_{k \wedge}: S_{p}^{q} \rightarrow S_{p+1}^{q+1}, \tag{5.7}\\
& i(x):=\sum_{k=1}^{n} x_{k} i\left(e_{k}\right): S_{p}^{q} \rightarrow S_{p-1}^{q+1}, \tag{5.8}\\
& \square:=\mathrm{dd}^{*}+\mathrm{d}^{*} \mathrm{~d}=-\sum_{k=1}^{n} \frac{\partial^{2}}{\partial x_{k}^{2}}: S_{p}^{q} \rightarrow S_{p}^{q-2} . \tag{5.9}
\end{align*}
$$

We are concerned with the commutation relations among these operators.
Lemma 5.1. The above operators satisfy the following relations:

$$
\begin{align*}
& \mathrm{d}^{2}=\mathrm{d}^{* 2}=\left(x_{\wedge}\right)^{2}=i(x)^{2}=0, \tag{5.10}\\
& \mathrm{~d} x_{\wedge}+x_{\wedge} \mathrm{d}=0, \quad \mathrm{~d}^{*} i(x)+i(x) \mathrm{d}^{*}=0, \tag{5.11}\\
& \mathrm{~d} i(x)+i(x) \mathrm{d}=r \frac{\partial}{\partial r}+L, \quad \mathrm{~d}^{*} x_{\wedge}+x_{\wedge} \mathrm{d}^{*}=-r \frac{\partial}{\partial r}-n+L, \tag{5.12}\\
& \square x_{\wedge}-x_{\wedge} \square=-2 \mathrm{~d}, \quad \square i(x)-i(x) \square=2 \mathrm{~d}^{*}, \tag{5.13}\\
& \square x_{\wedge} i(x)-x_{\wedge} i(x) \square=2 x_{\wedge} \mathrm{d}^{*}+2 i(x) \mathrm{d}-2 r \frac{\partial}{\partial r}-2 L, \tag{5.14}\\
& \square i(x) x_{\wedge}-i(x) x_{\wedge} \square=-2 x_{\wedge} \mathrm{d}^{*}-2 i(x) \mathrm{d}-2 r \frac{\partial}{\partial r}-2 n-2 L, \tag{5.15}\\
& \square \mathrm{~d}=\mathrm{d} \square, \quad \square \mathrm{~d}^{*}=\mathrm{d}^{*} \square . \tag{5.16}
\end{align*}
$$

Here we set $r:=|x|$ and $L:=\sum e_{k \wedge} i\left(e_{k}\right)$. The operator $r \partial / \partial r$ (resp. L) measures the polynomial's degree (resp. the form's degree). In other words, the operator $r \partial / \partial r$ (resp. L) is $q \cdot i \mathrm{~d}(r e s p . p \cdot i \mathrm{~d})$ on S_{p}^{q}.

Proof. We remark that $r \partial / \partial r$ is $\sum x_{k} \partial / \partial x_{k}$ and prove the lemma straightforwardly.
Now, there is an inner product $(\cdot, \cdot)_{\Lambda}$ on $\sum \Lambda^{p}$ such that $\left(e_{k \wedge} \psi, \psi^{\prime}\right)_{\Lambda}=\left(\psi, i\left(e_{k}\right) \psi^{\prime}\right)_{\Lambda}$ for any k. Then, we obtain the tensor inner product (\cdot, \cdot) on $\sum S^{q} \otimes \Lambda^{p}$ satisfying

$$
\begin{equation*}
\left(\mathrm{d} \psi, \psi^{\prime}\right)=\left(\psi, i(x) \psi^{\prime}\right), \quad\left(\mathrm{d}^{*} \psi, \psi^{\prime}\right)=-\left(\psi, x_{\wedge} \psi^{\prime}\right) \tag{5.17}
\end{equation*}
$$

These relations imply that the kernel of d (resp. d^{*}) is orthogonal to the image of $i(x)$ (resp. x_{\wedge}).

We shall investigate the complexes $\left(H_{*}^{q-*}, \mathrm{~d}\right)$ and $\left(H_{n-*}^{q-*}, \mathrm{~d}^{*}\right)$, i.e.,

$$
\begin{align*}
& \left(H_{*}^{q-*}, \mathrm{~d}\right): 0 \xrightarrow{\mathrm{~d}} H_{0}^{q} \xrightarrow{\mathrm{~d}} H_{1}^{q-1} \xrightarrow{\mathrm{~d}} \cdots \xrightarrow{\mathrm{~d}} H_{n}^{q-n} \xrightarrow{\mathrm{~d}} 0 \tag{5.18}\\
& \left(H_{n-*}^{q-*}, \mathrm{~d}^{*}\right): 0 \xrightarrow{\mathrm{~d}^{*}} H_{n}^{q} \xrightarrow{\mathrm{~d}^{*}} H_{n-1}^{q-1} \xrightarrow{\mathrm{~d}^{*}} \cdots \xrightarrow{\mathrm{~d}^{*}} H_{0}^{q-n} \xrightarrow{\mathrm{~d}^{*}} 0 . \tag{5.19}
\end{align*}
$$

If we have ψ in H_{p}^{q-p} such that $\mathrm{d} \psi=0$, then we have $\mathrm{d} i(x) \psi=q \psi$ from (5.12). But $i(x) \psi$ is not necessarily harmonic because $\square i(x) \psi=\left(i(x) \square+\mathrm{d}^{*}\right) \psi=\mathrm{d}^{*} \psi$. Thus, to prove the exactness of these complex is more complicated than the case of the spinors. So, we discuss the following complexes for $\left\{S_{p}^{q}\right\}$ instead of $\left\{H_{p}^{q}\right\}$:

$$
\begin{align*}
& \left(S_{*}^{q-*}, \mathrm{~d}\right): 0 \xrightarrow{\mathrm{~d}} S_{0}^{q} \xrightarrow{\mathrm{~d}} S_{1}^{q-1} \xrightarrow{\mathrm{~d}} \cdots \xrightarrow{\mathrm{~d}} S_{n}^{q-n} \xrightarrow{\mathrm{~d}} 0, \tag{5.20}\\
& \left(S_{n-*}^{q-*}, \mathrm{~d}^{*}\right): 0 \xrightarrow{\mathrm{~d}^{*}} S_{n}^{q} \xrightarrow{\mathrm{~d}^{*}} S_{n-1}^{q-1} \xrightarrow{\mathrm{~d}^{*}} \cdots \xrightarrow{\mathrm{~d}^{*}} S_{0}^{q-n} \xrightarrow{\mathrm{~d}^{*}} 0, \tag{5.21}\\
& \left(S_{*}^{q+*}, x_{\wedge}\right): 0 \xrightarrow{x_{1}} S_{0}^{q} \xrightarrow{x_{\mathrm{A}}} S_{1}^{q+1} \xrightarrow{x_{\mathrm{A}}} \cdots \xrightarrow{x_{\mathrm{A}}} S_{n}^{q+n} \xrightarrow{x} 0, \tag{5.22}\\
& \left(S_{n-*}^{q+*}, i(x)\right): 0 \xrightarrow{i(x)} S_{n}^{q} \xrightarrow{i(x)} S_{n-1}^{q+1 i(x)} \cdots \xrightarrow{i(x)} S_{0}^{q+n} \xrightarrow{i(x)} 0 . \tag{5.23}
\end{align*}
$$

Proposition 5.2. The complexes $\left(S_{*}^{q-*}, \mathrm{~d}\right),\left(S_{n-*}^{q-*}, \mathrm{~d}^{*}\right),\left(S_{*}^{q+*}, x_{\wedge}\right)$, and $\left(S_{n-*}^{q+*}, i(x)\right)$ are exact. It follows that

$$
\begin{align*}
& \operatorname{dim} \operatorname{ker}_{p}^{q} \mathrm{~d}=\binom{n+q}{p+q}\binom{p+q-1}{p-1} \quad \text { for } p \neq 0, \tag{5.24}\\
& \operatorname{dim} \operatorname{ker}_{p}^{q} \mathrm{~d}^{*}=\binom{n+q}{p}\binom{n+q-p+1}{q} \quad \text { for } p \neq n, \tag{5.25}
\end{align*}
$$

$$
\begin{equation*}
\operatorname{dim} \operatorname{ker}_{0}^{q} \mathrm{~d}=\operatorname{dim} \operatorname{ker}_{n}^{q} \mathrm{~d}^{*}=1 \tag{5.26}
\end{equation*}
$$

where $\operatorname{ker}_{q}^{p} \mathrm{~d}\left(\operatorname{resp} . \operatorname{ker}_{q}^{p} \mathrm{~d}^{*}\right)$ is the kernel of $\mathrm{d}\left(\right.$ resp. $\left.\mathrm{d}^{*}\right)$ on S_{q}^{p}.
Proof. The exactness follows from (5.12). Then we can calculate dimensions of $\operatorname{ker}_{q}^{p} \mathrm{~d}$ and $\operatorname{ker}_{q}^{p} \mathrm{~d}^{*}$. For example, we have

$$
\begin{equation*}
\operatorname{dim} \operatorname{ker}_{p}^{q} \mathrm{~d}=\sum_{m=0}^{p-1}(-1)^{m-(p-1)} \operatorname{dim} S_{m}^{p+q-m} \tag{5.27}
\end{equation*}
$$

where

$$
\operatorname{dim} S_{p}^{q}=\operatorname{dim} S^{q} \otimes \Lambda^{q}=\binom{n+q-1}{q}\binom{n}{p}
$$

By the induction for p, we obtain (5.24).

Corollary 5.3. We have decompositions of S_{p}^{q} as follows:

$$
\begin{align*}
& S_{p}^{q}=\operatorname{ker}_{p}^{q} \mathrm{~d} \oplus \operatorname{ker}_{p}^{q} i(x) \tag{5.28}\\
& S_{p}^{q}=\operatorname{ker}_{p}^{q} \mathrm{~d}^{*} \oplus \operatorname{ker}_{p}^{q} x_{\wedge} \tag{5.29}\\
& S_{p}^{q}=\operatorname{ker}_{p}^{q} \mathrm{~d} \cap \operatorname{ker}_{p}^{q} \mathrm{~d}^{*} \oplus \operatorname{ker}_{p}^{q} x_{\wedge} \oplus \operatorname{ker}_{p}^{q} i(x), \tag{5.30}
\end{align*}
$$

where $\operatorname{ker}_{p}^{q} \mathrm{~d}\left(\right.$ resp. $\left.\operatorname{ker}_{p}^{q} \mathrm{~d}^{*}\right)$ is orthogonal to $\operatorname{ker}_{p}^{q} i(x)\left(\right.$ resp. $\left.\operatorname{ker}_{p}^{q} x_{\wedge}\right)$. The dimension of $\operatorname{ker}_{p}^{q} \mathrm{~d} \cap \operatorname{ker}_{p}^{q} \mathrm{~d}^{*}$ is given by

$$
\begin{equation*}
\operatorname{dim} \operatorname{ker}_{p}^{q} \mathrm{~d} \cap \operatorname{ker}_{p}^{q} \mathrm{~d}^{*}=\frac{(n+q-1)!}{(n-p-1)!(p-1)!q!} \frac{n+2 q}{(p+q)(n+q-p)} \tag{5.31}
\end{equation*}
$$

Proof. From Proposition 5.2, we have $\operatorname{ker}_{p}^{q} i(x)=\operatorname{Im}_{p+1}^{q-1} i(x)$. So $\operatorname{ker}_{p}^{q} \mathrm{~d}$ is orthogonal to $\operatorname{ker}_{p}^{q} i(x)$. Besides, we have $\mathrm{d} i(x) \phi+i(x) \mathrm{d} \phi=(p+q) \phi$ for ψ in S_{p}^{q} and conclude that S_{p}^{q} decomposes as the orthogonal direct sum of $\operatorname{ker}_{p}^{q} \mathrm{~d}$ and $\operatorname{ker}_{p}^{q} i(x)$. Similarly, we have the second decomposition (5.29). To show the third decomposition, we consider the orthogonal complement of $\operatorname{ker}_{p}^{q} \mathrm{~d} \cap \operatorname{ker}_{p}^{q} \mathrm{~d}^{*}$:

$$
\begin{equation*}
\left(\operatorname{ker}_{p}^{q} \mathrm{~d} \cap \operatorname{ker}_{p}^{q} \mathrm{~d}^{*}\right)^{\perp}=\left(\operatorname{ker}_{p}^{q} \mathrm{~d}\right)^{\perp}+\left(\operatorname{ker}_{p}^{q} \mathrm{~d}^{*}\right)^{\perp}=\operatorname{ker}_{p}^{q} i(x)+\operatorname{ker}_{p}^{q} x_{\wedge} \tag{5.32}
\end{equation*}
$$

We shall prove that $\operatorname{ker}_{p}^{q} i(x) \cap \operatorname{ker}_{p}^{q} x_{\wedge}$ is zero. We have the following relation between x_{\wedge} and $i(x)$:

$$
\begin{equation*}
x_{\wedge} i(x)+i(x) x_{\wedge}=|x|^{2}=r^{2} \tag{5.33}
\end{equation*}
$$

Since the multiplication r^{2} is injective on S_{p}^{q}, we show that $\operatorname{ker}_{p}^{q} i(x) \cap \operatorname{ker}_{p}^{q} x_{\wedge}=0$ and hence $\operatorname{ker}_{p}^{q} i(x)+\operatorname{ker}_{p}^{q} x_{\wedge}=\operatorname{ker}_{p}^{q} i(x) \oplus \operatorname{ker}_{p}^{q} x_{\wedge}$. Then, we have the third decomposition (5.30). The decomposition (5.30) allows us to calculate the dimension of $\operatorname{ker}_{p}^{q} \mathrm{~d} \cap \operatorname{ker}_{p}^{q} \mathrm{~d}^{*}$:

$$
\begin{equation*}
\operatorname{dim} \operatorname{ker}_{p}^{q} \mathrm{~d} \cap \operatorname{ker}_{p}^{q} \mathrm{~d}^{*}=\operatorname{dim} \operatorname{ker}_{p}^{q} \mathrm{~d}+\operatorname{dim} \operatorname{ker}_{p}^{q} \mathrm{~d}^{*}-\operatorname{dim} S_{p}^{q} \tag{5.34}
\end{equation*}
$$

From (5.24) and (5.25), we obtain $\operatorname{dim} \operatorname{ker}_{p}^{q} \mathrm{~d} \cap \operatorname{ker}_{p}^{q} \mathrm{~d}^{*}$ as (5.31).
Remark 5.4. The vector space $\operatorname{ker}_{p}^{q} i(x)$ is not always orthogonal to $\operatorname{ker}_{p}^{q} x_{\wedge}$.
We denote the vector space $\operatorname{ker}_{p}^{q} \mathrm{~d} \cap \operatorname{ker}_{p}^{q} \mathrm{~d}^{*}$ by I_{p}^{q}, which is a subspace of H_{p}^{q}. We shall decompose the vector spaces $\operatorname{ker}_{p}^{q} x_{\wedge}$ and $\operatorname{ker}_{p}^{q} i(x)$ further. The exactness of $\left(S_{*}^{q+*}, x_{\wedge}\right)$
means that $\operatorname{ker}_{p}^{q} x_{\wedge}=x_{\wedge}\left(S_{p-1}^{q-1}\right)$. Then, from Corollary 5.3, we have

$$
\begin{align*}
\operatorname{ker}_{p}^{q} x_{\wedge} & =x_{\wedge}\left(S_{p-1}^{q-1}\right)=x_{\wedge}\left(I_{p-1}^{q-1}\right) \oplus x_{\wedge}\left(\operatorname{ker}_{p+1}^{q-1} x_{\wedge}\right) \oplus x_{\wedge}\left(\operatorname{ker}_{p-1}^{q-1} i(x)\right) \\
& =x_{\wedge} I_{p-1}^{q-1} \oplus x_{\wedge}\left(\operatorname{ker}_{p-1}^{q-1} i(x)\right) \tag{5.35}
\end{align*}
$$

where we remark that the map x_{\wedge} is injective on I_{p-1}^{q-1} and $\operatorname{ker}_{p-1}^{q-1} i(x)$. In the same way, we have

$$
\begin{equation*}
\operatorname{ker}_{p}^{q} i(x)=i(x) I_{p+1}^{q-1} \oplus i(x)\left(\operatorname{ker}_{p+1}^{q-1} x_{\wedge}\right) \tag{5.36}
\end{equation*}
$$

and know that the map $i(x)$ is injective on I_{p+1}^{q-1} and $\operatorname{ker}_{p+1}^{q-1} x_{\wedge}$. It is easy to see that $x_{\wedge} I_{p-1}^{q-1}$ and $i(x) I_{p+1}^{q-1}$ are subspaces of H_{p}^{q} and orthogonal to each other.

Since we have shown that $I_{p}^{q} \oplus x_{\wedge} I_{p-1}^{q-1} \oplus i(x) I_{p+1}^{q-1}$ is in H_{p}^{q}, we consider the direct sum of the remaining parts $x_{\wedge}\left(\operatorname{ker}_{p-1}^{q-1} i(x)\right)$ and $i(x)\left(\operatorname{ker}_{p+1}^{q-1} x_{\wedge}\right)$. Here,

$$
\begin{align*}
& x_{\wedge}\left(\operatorname{ker}_{p-1}^{q-1} i(x)\right)=x_{\wedge} i(x) I_{p}^{q-2} \oplus x_{\wedge} i(x)\left(\operatorname{ker}_{p}^{q-2} x_{\wedge}\right) \tag{5.37}\\
& i(x)\left(\operatorname{ker}_{p+1}^{q-1} x_{\wedge}\right)=i(x) x_{\wedge} I_{p}^{q-2} \oplus i(x) x_{\wedge}\left(\operatorname{ker}_{p}^{q-2} i(x)\right) \tag{5.38}
\end{align*}
$$

To get the harmonic part of $x_{\wedge}\left(\operatorname{ker}_{p-1}^{q-1} i(x)\right) \oplus i(x)\left(\operatorname{ker}_{p+1}^{q-1} x_{\wedge}\right)$, we use the decomposition of S_{p}^{q} into harmonic part H_{p}^{q} and its orthogonal complement $r^{2} S_{p}^{q-2}$, i.e., $S_{p}^{q}=H_{p}^{q} \oplus r^{2} S_{p}^{q-2}$. The complement part $r^{2} S_{p}^{q-2}$ has the decomposition

$$
\begin{align*}
r^{2} S_{p}^{q-2} & =\left(x_{\wedge} i(x)+i(x) x_{\wedge}\right) S_{p}^{q-2} \\
& =r^{2} I_{p}^{q-2} \oplus x_{\wedge} i(x)\left(\operatorname{ker}_{p}^{q-2} x_{\wedge}\right) \oplus i(x) x_{\wedge}\left(\operatorname{ker}_{p}^{q-2} i(x)\right) \tag{5.39}
\end{align*}
$$

On the other hands, we have had the following decomposition of S_{p}^{q} :

$$
\begin{align*}
S_{p}^{q}= & I_{p}^{q} \oplus x_{\wedge} I_{p-1}^{q-1} \oplus i(x) I_{p+1}^{q-1} \oplus x_{\wedge} i(x) I_{p}^{q-2} \oplus i(x) x_{\wedge} I_{p}^{q-2} \\
& \oplus x_{\wedge} i(x)\left(\operatorname{ker}_{p}^{q-2} x_{\wedge}\right) \oplus i(x) x_{\wedge}\left(\operatorname{ker}_{p}^{q-2} i(x)\right) . \tag{5.40}
\end{align*}
$$

Comparing the above two decompositions, we remark that $x_{\wedge} i(x) I_{p}^{q-2} \oplus i(x) x_{\wedge} I_{p}^{q-2}$ can be decomposed into the harmonic and the non-harmonic parts.

Lemma 5.5. The vector space $x_{\wedge} i(x) I_{p}^{q-2} \oplus i(x) x_{\wedge} I_{p}^{q-2}$ has the decomposition

$$
\begin{equation*}
x_{\wedge} i(x) I_{p}^{q-2} \oplus i(x) x_{\wedge} I_{p}^{q-2}=h_{p}^{q-2} I_{p}^{q-2} \oplus r^{2} I_{p}^{q-2} \tag{5.41}
\end{equation*}
$$

Here, the map h_{p}^{q} is defined by

$$
\begin{equation*}
h_{p}^{q}:=(q+n-p) x_{\wedge} i(x)-(q+p) i(x) x_{\wedge}: S_{p}^{q} \rightarrow S_{p}^{q+2} \tag{5.42}
\end{equation*}
$$

This map h_{p}^{q} is injective on I_{p}^{q} and its image $h_{p}^{q} I_{p}^{q}$ is in H_{p}^{q+2}.

Proof. Since the maps $i(x) x_{\wedge}, i(x) x_{\wedge}$, and r^{2} are injective on I_{p}^{q}, we have

$$
\begin{equation*}
x_{\wedge} i(x) I_{p}^{q-2} \oplus i(x) x_{\wedge} I_{p}^{q-2}=r^{2} I_{p}^{q-2} \oplus\left(a x_{\wedge} i(x)+b i(x) x_{\wedge}\right) I_{p}^{q-2} \tag{5.43}
\end{equation*}
$$

where we choose a pair of constants (a, b) such that $(a, b) \neq \lambda(1,1)$ for any λ in \mathbf{C}. If we put $(a, b)=(q+n-p-2,-(q+p-2))$, then we show from (5.14) and (5.15) that $\left(a i(x) x_{\wedge}+b x_{\wedge} i(x)\right)\left(I_{p}^{q-2}\right)$ is harmonic.

We are now in a position to describe a decomposition of the Clifford algebra-valued or the exterior algebra-valued harmonic polynomials.

Theorem 5.6. The space of the exterior algebra-valued harmonic polynomials with polynomial's degree q and form's degree p is decomposed as follows:

$$
\begin{align*}
H_{p}^{q}= & \operatorname{ker}_{p}^{q} \mathrm{~d} \cap \operatorname{ker}_{p}^{q} \mathrm{~d}^{*} \oplus x_{\wedge}\left(\operatorname{ker}_{p-1}^{q-1} \mathrm{~d} \cap \operatorname{ker}_{p-1}^{q-1} \mathrm{~d}^{*}\right) \oplus i(x)\left(\operatorname{ker}_{p+1}^{q-1} \mathrm{~d} \cap \operatorname{ker}_{p+1}^{q-1} \mathrm{~d}^{*}\right) \\
& \oplus h_{p}^{q-2}\left(\operatorname{ker}_{p}^{q-2} \mathrm{~d} \cap \operatorname{ker}_{p}^{q-2} \mathrm{~d}^{*}\right) \tag{5.44}
\end{align*}
$$

where each component is orthogonal to others. Furthermore, we have

$$
\begin{align*}
& \operatorname{ker}_{p}^{q} \mathrm{~d} \cap H_{p}^{q}=\operatorname{ker}_{p}^{q} \mathrm{~d} \cap \operatorname{ker}_{p}^{q} \mathrm{~d}^{*} \oplus x_{\wedge}\left(\operatorname{ker}_{p-1}^{q-1} \mathrm{~d} \cap \operatorname{ker}_{p-1}^{q-1} \mathrm{~d}^{*}\right) \tag{5.45}\\
& \operatorname{ker}_{p}^{q} \mathrm{~d}^{*} \cap H_{p}^{q}=\operatorname{ker}_{p}^{q} \mathrm{~d} \cap \operatorname{ker}_{p}^{q} \mathrm{~d}^{*} \oplus i(x)\left(\operatorname{ker}_{p+1}^{q-1} \mathrm{~d} \cap \operatorname{ker}_{p+1}^{q-1} \mathrm{~d}^{*}\right) \tag{5.46}
\end{align*}
$$

Proof. The orthogonal decomposition of H_{p}^{q} follows from discussions in this section. So we shall prove (5.45) and (5.46). It is clear that $\operatorname{ker}_{p}^{q} \mathrm{~d} \cap H_{p}^{q}$ has the subspace $I_{p}^{q} \oplus x_{\wedge} I_{p-1}^{q-1}$. For ϕ in $\operatorname{ker}_{p}^{q} \mathrm{~d} \cap H_{p}^{q}$, we have $\mathrm{d}^{*} x_{\wedge} \phi+x_{\wedge} \mathrm{d}^{*} \phi=(-q-n+p) \phi$ and show that $\mathrm{d}^{*} x_{\wedge} \phi$ is in I_{p}^{q} and $x_{\wedge} \mathrm{d}^{*} \phi$ is in $x_{\wedge} I_{p-1}^{q-1}$. Thus, we have $\operatorname{ker}_{p}^{q} \mathrm{~d} \cap H_{p}^{q}=I_{p}^{q} \oplus x_{\wedge} I_{p+1}^{q-1}$. Similarly, we can prove (5.46).

This theorem implies the exactness of the complexes $\left(H_{*}^{q-*}, \mathrm{~d}\right)$ and $\left(H_{n-*}^{q-*}, \mathrm{~d}^{*}\right)$.
Corollary 5.7 (Poincaré lemma for harmonic polynomials on \mathbf{R}^{n}). The complexes ($H_{*}^{q-*}, \mathrm{~d}$) and $\left(H_{n-*}^{q-*}, \mathrm{~d}^{*}\right)$ are exact.

Proof. From Theorem 5.6, it follows that

$$
\begin{align*}
& \operatorname{ker}_{p}^{q} \mathrm{~d} \cap H_{p}^{q}=I_{p}^{q} \oplus x_{\wedge} I_{p-1}^{q-1} \tag{5.47}\\
& \mathrm{~d}\left(H_{p-1}^{q+1}\right)=\mathrm{d}\left(i(x) I_{p}^{q}\right) \oplus \mathrm{d}\left(h_{p-1}^{q-1} I_{p-1}^{q-1}\right) \tag{5.48}
\end{align*}
$$

where the map d is injective on $i(x) I_{p}^{q}$ and $h_{p-1}^{q-1} I_{p-1}^{q-1}$. We show that $\mathrm{d}\left(i(x) I_{q}^{p}\right)$ is a subspace in I_{p}^{q} and $\operatorname{dim} I_{p}^{q}=\operatorname{dim~d}\left(i(x) I_{p}^{q}\right)$. Therefore, the map d:i(x) $I_{p}^{q} \rightarrow I_{p}^{q}$ is isomorphism. In the same way, we show that the map d $: h_{p-1}^{q-1} I_{p-1}^{q-1} \rightarrow x_{\wedge} I_{p-1}^{q-1}$ is isomorphism. Then, we conclude that $\left(H_{*}^{q-*}, \mathrm{~d}\right)$ is exact. Similarly, we prove that $\left(H_{n-*}^{q-*}, \mathrm{~d}^{*}\right)$ is exact.

6. Some representations of $\operatorname{Spin}(n)$

In this section, we present some results for the representation theory of $\operatorname{Spin}(n)$ by using the Clifford algebra [9,11-13]. Let \mathfrak{g} be the Lie algebra $\mathfrak{s p i n}(n)=\mathbf{R}\left\{e_{k} e_{l}\right\}_{k<l}$ in $\mathbf{C} l_{n}$ with bracket $[a, b]=a b-b a$ and let $\mathfrak{g}_{\mathbf{C}}$ be the complexification of \mathfrak{g}, i.e., $\mathfrak{g}_{\mathbf{C}}=\mathfrak{g} \otimes \mathbf{C}$. Since all the finite dimensional complex irreducible representations of $\operatorname{Spin}(n)$ correspond to the ones of $\mathfrak{g}_{\mathbf{C}}$, we investigate the representations of $\mathfrak{g}_{\mathbf{C}}$.

Definition 6.1. For $1 \leq k \leq\left[\frac{1}{2} n\right]$,

$$
\begin{align*}
& a_{k}:=\frac{1}{2}\left(\sqrt{-1} e_{2 k-1}-e_{2 k}\right), \quad a_{k}^{\dagger}:=\frac{1}{2}\left(\sqrt{-1} e_{2 k-1}+e_{2 k}\right), \tag{6.1}\\
& \omega_{k}:=a_{k}^{\dagger} a_{k}-\frac{1}{2}=-\frac{\sqrt{-1}}{2} e_{2 k-1} e_{2 k}, \tag{6.2}\\
& z_{k}:=x_{2 k-1}+\sqrt{-1} x_{2 k}, \quad \bar{z}_{k}:=x_{2 k-1}-\sqrt{-1} x_{2 k} . \tag{6.3}
\end{align*}
$$

When $n=2 m+1$,

$$
\begin{equation*}
b:=\sqrt{-1} e_{2 m+1} . \tag{6.4}
\end{equation*}
$$

We put $[a, b]_{+}:=a b+b a$ and rewrite the Clifford relation (2.1) as follows:

$$
\begin{align*}
& {\left[a_{k}, a_{l}^{\dagger}\right]_{+}=\delta_{k l}, \quad[b, b]_{+}=2} \tag{6.5}\\
& {\left[a_{k}, a_{l}\right]_{+}=\left[a_{k}^{\dagger}, a_{l}^{\dagger}\right]_{+}=\left[a_{k}, b\right]_{+}=\left[a_{k}^{\dagger}, b\right]_{+}=0} \tag{6.6}
\end{align*}
$$

We choose the sub-algebra $\mathbf{R}\left\{\sqrt{-1} \omega_{k}\right\}_{k}$ as a Cartan sub-algebra of \mathfrak{g} and define a dual basis $\left\{f_{k}\right\}_{k}$ of $\left\{\omega_{k}\right\}_{k}$ by $f_{l}\left(\omega_{k}\right)=\delta_{k l}$. The irreducible finite dimensional representations of $\mathfrak{g}_{\mathbf{C}}$ are parameterized by the dominant integral weights. The weight $\lambda=\sum_{k=1}^{m} s_{k} f_{k}$ is dominant integral if and only if $s=\left(s_{1}, \ldots, s_{m}\right)$ satisfies that

$$
\begin{align*}
& s_{1} \geq \cdots s_{m-1} \geq\left|s_{m}\right|, \quad n=2 m \tag{6.7}\\
& s_{1} \geq \cdots s_{m-1} \geq s_{m} \geq 0, \quad n=2 m+1 \tag{6.8}
\end{align*}
$$

where s is in \mathbf{Z}^{m} or $\mathbf{Z}^{m}+\left(\frac{1}{2}, \ldots, \frac{1}{2}\right)$. We denote the weight $\lambda=\sum_{3} s_{k} f_{k}$ by $s=\left(s_{1}, \ldots, s_{m}\right)$, and a string of $j k$'s for k in $\mathbf{Z} \cup \frac{1}{2} \mathbf{Z}$ by k_{j}. For example, $\left(\left(\frac{3}{2}\right)_{p},\left(\frac{1}{2}\right)_{m-p}\right)$ is the weight whose first p components are $\frac{3}{2}$ and others are $\frac{1}{2}$. Besides, we denote the representation space corresponding to $s=\left(s_{1}, \ldots, s_{m}\right)$ by $V\left(s_{1}, \ldots, s_{m}\right)$.

We shall present some representations of \mathfrak{g}. First, the space of harmonic polynomials H^{q} gives the irreducible representation space whose highest weight vector is \bar{z}_{1}^{q} with weight ($q, 0_{m-1}$).

Next, the spinor space W_{n} is given by $\left\{a_{k_{1}}^{\dagger} \cdots a_{k_{j}}^{\dagger}|v a c\rangle \mid 1 \leq k_{1}<\cdots<k_{j} \leq m\right\}$, where we define $a_{k}|v a c\rangle:=0$ for any k and $b|v a c\rangle:=|v a c\rangle$. Then $W_{2 m}^{+}$(resp. $W_{2 m}^{-}$) gives the irreducible representation space whose highest vector is $a_{1}^{\dagger} \cdots a_{m}^{\dagger}|v a c\rangle$ with weight $\left(\left(\frac{1}{2}\right)_{m}\right)$
(resp. $a_{1}^{\dagger} \cdots a_{m-1}^{\dagger}|v a c\rangle$ with weight $\left.\left(\left(\frac{1}{2}\right)_{m-1},-\frac{1}{2}\right)\right)$ and $W_{2 m+1}$ does the one whose highest weight vector is $a_{1}^{\dagger} \cdots a_{m}^{\dagger}|v a c\rangle$ with weight $\left(\left(\frac{1}{2}\right)_{m}\right)$.

Finally, we consider the space of p-forms, Λ^{p}. Under the isomorphism $\sum \Lambda^{p}=\mathbf{C} l_{n}$, the action of $\mathfrak{s p i n}(n)$ is defined by $\operatorname{ad}\left(e_{k} e_{l}\right)(\phi)=e_{k} e_{l} \phi-\phi e_{k} e_{l}$ for ϕ in Λ^{p}. We define the algebraic operator ω commuting with the action of $\mathfrak{s p i n}(n)$ by

$$
\begin{equation*}
\omega: \Lambda^{p} \ni \psi \mapsto 2^{m} \omega_{1} \cdots \omega_{m} \psi \in \Lambda^{n-p} \tag{6.9}
\end{equation*}
$$

This operator is called the complex volume element and satisfies that $\omega^{2}=1$ and $e_{k} \omega=$ $-\omega e_{k}$. We know that, for $0 \leq p \leq m$ except the case of $n=2 m$ and $p=m, \Lambda^{p}$ is equivalent to Λ^{n-p} by the operator ω and gives the irreducible representation space whose highest weight vector is $a_{1}^{\dagger} \cdots a_{p}^{\dagger}$ with weight $\left(1_{p}, 0_{m-p}\right)$. For $n=2 m$ and $p=m, \omega$ decomposes Λ^{m} into ± 1-eigenspace $\Lambda_{ \pm}^{m}$. Then Λ_{+}^{m} (resp. Λ_{-}^{m}) has the highest weight vector $a_{1}^{\dagger} \cdots a_{m}^{\dagger}$ with weight $\left(1_{m}\right)$ (resp. $a_{1}^{\dagger} \cdots a_{m-1}^{\dagger} a_{m}$ with weight $\left(1_{m-1},-1\right)$).

7. The irreducible decomposition of $\boldsymbol{H}^{q} \otimes \mathbf{C} l_{n}$

In this section, we show that our geometrical decompositions of $H^{q} \otimes \Lambda^{p}$ are the irreducible decompositions with respect to $\operatorname{Spin}(n)$. For the spinor case, we can prove similar results [2,3,8,14].

The actions of $\mathfrak{g}_{\mathbf{C}}$ on $H^{q} \otimes \Lambda^{p}$ are given by

$$
\begin{equation*}
\mathfrak{g}_{\mathbf{C}} \times\left(H^{q} \otimes \Lambda^{q}\right) \ni\left(\frac{e_{k} e_{l}}{2}, \psi(x)\right) \mapsto-x_{k} \frac{\partial \psi}{\partial x_{l}}+x_{l} \frac{\partial \psi}{\partial x_{k}}+\operatorname{ad}\left(\frac{e_{k} e_{l}}{2}\right) \psi \in H^{q} \otimes \Lambda^{q} . \tag{7.1}
\end{equation*}
$$

We see the following commutation relations between the above actions and the operators given in Section 5.

Lemma 7.1. On $\sum H^{q} \otimes \Lambda^{p}$, the operators $\mathrm{d}, \mathrm{d}^{*}, x_{\wedge}$, and $i(x)$ commute with the action of $\mathfrak{g}_{\mathrm{C}}$. It follows that each component of the geometrical decomposition (5.44) is an invariant subspace for $\mathfrak{g}_{\mathbf{C}}$.

Proof. We can prove the lemma by straightforward calculations. So we omit the proof.

In general, if we have two irreducible highest weight representations V_{λ} and $V_{\lambda^{\prime}}$ whose highest weight vectors are v_{λ} and $v_{\lambda^{\prime}}$, respectively, then we find an irreducible representation $V_{\lambda+\lambda^{\prime}}$ with highest vector $v_{\lambda} \otimes v_{\lambda^{\prime}}$ in $V_{\lambda} \otimes V_{\lambda^{\prime}}$. We apply this fact to $H^{q} \otimes \Lambda^{p}$.

Since $H^{q}=V\left(q, 0_{m-1}\right)$ and $\Lambda^{p}=V\left(1_{p}, 0_{m-p}\right)$, we know that $V\left(q+1,1_{p-1}, 0_{m-p}\right)$ is an irreducible component of $H^{q} \otimes \Lambda^{p}$, whose highest weight vector is $\psi_{0}(x):=\bar{z}_{1}^{q} a_{1}^{\dagger} \cdots a_{p}^{\dagger}$. If we show that the vector $\psi_{0}(x)$ is in I_{p}^{q}, then we conclude that $V\left(q+1,1_{p-1}, 0_{m-p}\right)$ is a subspace of I_{p}^{q}. So we need the following formula of the operators d and d^{*}.

Lemma 7.2. When we use the notation of Definition 6.1 , we rewrite the operator d and d^{*} on $H^{q} \otimes \Lambda^{p}$ as follows:

1. For $n=2 m$,

$$
\begin{align*}
& \mathrm{d}+\mathrm{d}^{*}=-2 \sqrt{-1} \sum_{k=1}^{m}\left(a_{k}^{L} \frac{\partial}{\partial z_{k}}+a_{k}^{\dagger L} \frac{\partial}{\partial \bar{z}_{k}}\right) \tag{7.2}\\
& (-1)^{p}\left(\mathrm{~d}-\mathrm{d}^{*}\right)=-2 \sqrt{-1} \sum_{k=1}^{m}\left(a_{k}^{R} \frac{\partial}{\partial z_{k}}+a_{k}^{\dagger} \frac{\partial}{\partial \bar{z}_{k}}\right) \tag{7.3}
\end{align*}
$$

where $a_{k}^{L}\left(\right.$ resp. $\left.a_{k}{ }^{R}\right)$ is defined by $a_{k}^{L} \psi:=a_{k} \cdot \psi\left(\right.$ resp. $\left.a_{k}{ }^{R} \psi:=\psi \cdot a_{k}\right)$.
2. For $n=2 m+1$, we add

$$
\begin{equation*}
-\sqrt{-1} b^{L} \frac{\partial}{\partial x_{2 m+1}}, \quad-\sqrt{-1} b^{R} \frac{\partial}{\partial x_{2 m+1}} \tag{7.4}
\end{equation*}
$$

to the right-hand sides of (7.2) and (7.3), respectively.
Proof. We know that $e_{i}^{L}=e_{i \wedge}-i\left(e_{i}\right)$ and $e_{i}^{R}=(-1)^{p}\left(e_{i \wedge}+i\left(e_{i}\right)\right)$ and prove the lemma.

From this lemma, we can easily show that $\mathrm{d}\left(\psi_{0}(x)\right)=\mathrm{d}^{*}\left(\psi_{0}(x)\right)=0$ and hence $V(q+1$, $\left.1_{p-1}, 0_{m-p}\right)$ is in I_{p}^{q}. Furthermore, by Weyl's dimension formula, we have $\operatorname{dim} V(q+1$, $1_{p-1}, 0_{m-p}$) $=\operatorname{dim} I_{p}^{q}$. Then, we conclude that I_{p}^{q} gives the irreducible representation whose highest weight vector is $\psi_{0}(x)$ with weight $\left(q+1,1_{p-1}, 0_{m-p}\right)$.

Proposition 7.3. The vector space $I_{p}^{q}=\operatorname{ker}_{p}^{q} \mathrm{~d} \cap \operatorname{ker}_{p}^{q} \mathrm{~d}^{*}$ has the following description as a representation space of $\operatorname{Spin}(n)$.

1. When $1 \leq p \leq\left[\frac{1}{2} n\right]$ or when $n=2 m+1$ and $p=m$,

$$
\begin{equation*}
\operatorname{ker}_{p}^{q} \mathrm{~d} \cap \operatorname{ker}_{p}^{q} \mathrm{~d}^{*} \simeq \operatorname{ker}_{n-p}^{q} \mathrm{~d} \cap \operatorname{ker}_{n-p}^{q} \mathrm{~d}^{*} \simeq V\left(q+1,1_{p-1}, 0_{m-p}\right) \tag{7.5}
\end{equation*}
$$

2. When $n=2 m$,

$$
\begin{equation*}
\operatorname{ker}_{m}^{q} \mathrm{~d} \cap \operatorname{ker}_{m}^{q} \mathrm{~d}^{*} \simeq V\left(q+1,1_{m-1}\right) \oplus V\left(q+1,1_{m-2},-1\right) \tag{7.6}
\end{equation*}
$$

Now, Lemma 7.1 implies the isomorphisms as representation spaces,

$$
\begin{equation*}
x_{\wedge} I_{p}^{q} \simeq i(x) I_{p}^{q} \simeq h_{p}^{q} I_{p}^{q} \simeq I_{p}^{q} \tag{7.7}
\end{equation*}
$$

Therefore, we give a representation theoretical meaning to our geometrical decompositions of $H^{q} \otimes \Lambda^{p}$.

Corollary 7.4. We decompose $H^{q} \otimes \Lambda^{p}$ into irreducible components as follows:

1. When $n=2 m$ and $0 \leq p \leq m-2$ or when $n=2 m+1$ and $0 \leq p \leq m-1$,

$$
\begin{align*}
H^{q} \otimes \Lambda^{p} \simeq & H^{q} \otimes \Lambda^{n-p} \simeq V\left(q, 0_{m-1}\right) \otimes V\left(1_{p}, 0_{m-p}\right) \\
\simeq & V\left(q+1,1_{p-1}, 0_{m-p}\right) \oplus V\left(q, 1_{p-2}, 0_{m-p+1}\right) \\
& \oplus V\left(q, 1_{p}, 0_{m-p-1}\right) \oplus V\left(q-1,1_{p-1}, 0_{m-p}\right) \tag{7.8}
\end{align*}
$$

2. When $n=2 m$,

$$
\begin{align*}
H^{q} \otimes \Lambda^{m-1} \simeq & H^{q} \otimes \Lambda^{m+1} \simeq V\left(q, 0_{m-1}\right) \otimes V\left(1_{m-1}, 0\right) \\
\simeq & V\left(q+1,1_{m-2}, 0\right) \oplus\left(V\left(q, 1_{m-1}\right) \oplus V\left(q, 1_{m-2},-1\right)\right) \\
& \oplus V\left(q, 1_{m-3}, 0,0\right) \oplus V\left(q-1,1_{m-2}, 0\right) \tag{7.9}\\
H^{q} \otimes \Lambda^{m} \simeq & V\left(q, 0_{m-1}\right) \otimes\left(V\left(1_{m}\right) \oplus V\left(1_{m-1},-1\right)\right) \\
\simeq & \left(V\left(q+1,1_{m-1}\right) \oplus V\left(q+1,1_{m-2},-1\right)\right) \oplus V\left(q, 1_{m-2}, 0\right) \\
& \oplus V\left(q, 1_{m-2}, 0\right) \oplus\left(V\left(q-1,1_{m-1}\right) \oplus V\left(q-1,1_{m-2},-1\right)\right) \tag{7.10}
\end{align*}
$$

3. When $n=2 m+1$,

$$
\begin{align*}
H^{q} & \otimes \Lambda^{m} \simeq V\left(q, 0_{m-1}\right) \otimes V\left(1_{m}\right) \simeq V\left(q+1,1_{m-1}\right) \oplus V\left(q, 1_{m-2}, 0\right) \\
& \oplus V\left(q, 1_{m-1}\right) \oplus V\left(q-1,1_{m-1}\right) \tag{7.11}
\end{align*}
$$

Remark 7.5. By using the complex volume element ω, we decompose $H^{q} \otimes \Lambda_{ \pm}^{m}$ for $n=2 m$:

$$
\begin{align*}
H^{q} \otimes \Lambda_{ \pm}^{m} & \simeq V\left(q, 0_{m-1}\right) \otimes V\left(1_{m-1}, \pm 1\right) \\
& \simeq V\left(q+1,1_{m-2}, \pm 1\right) \oplus V\left(q, 1_{m-2}, 0\right) \oplus V\left(q-1,1_{m-2}, \mp 1\right) \tag{7.12}
\end{align*}
$$

Remark 7.6. From the above corollary and Proposition 3.2, we decompose $L^{2}\left(A_{\mathbf{C}}^{p}\left(S^{n-1}\right)\right)$ into irreducible components [9,11].

Acknowledgements

The author would like to thank Prof. T. Kori and Prof. K. Fujii for their good advice and encouragement, and thank Prof. A. Ikeda for letting him know the paper [11]. The author also thanks the referees for their good advice and suggestions.

References

[1] M.F. Atiyah, R. Bott, A. Shapiro, Clifford modules, Topology 3 (1964) 3-38.
[2] C. Bär, The Dirac operator on homogeneous spaces and its spectrum on three-dimensional lens spaces, Arch. Math. 59 (1992) 65-79.
[3] C. Bär, The Dirac operator on space forms of positive curvature, J. Math. Soc. Jpn. 48 (1996) 69-83.
[4] T. Branson, Stein-Weiss operators and ellipticity, J. Funct. Anal. 151 (1997) 334-383.
[5] J. Bureš, V. Souček, Eigenvalues of conformally invariant operators on spheres, in: The 18th Winter School "Geometry and Physics", Rend. Circ. Mat. Palermo 2 (Suppl. 59) (1999) 109-122 (math. DG/9807050).
[6] J. Bureš, Dirac operators on hypersurfaces, Commun. Math. Univ. Carolinae 34 (2) (1993) 313-322.
[7] J. Bureš, The higher spin Dirac operators, Differential Geometry and Applications (Brno. 1998), Masaryk University, Brno, 1999, pp. 319-334 (math. DG/9901039).
[8] R. Delanghe, F. Sommen, V. Souček, Clifford Algebra and Spinor-Valued Functions, Kluwer Academic Publishers, Dordrecht, 1992.
[9] G.B. Folland, Harmonic analysis of the de Rham complex on the sphere, J. Reine Angew. Math. 398 (1989) 130-143.
[10] Y. Homma, A representation of $\operatorname{Spin}(4)$ on the eigenspinors of the Dirac operator on S^{3}, Tokyo J. Math., in press.
[11] A. Ikeda, Y. Taniguchi, Spectra and eigenforms of the Laplacian on S^{n} and $P^{n}(\mathbf{C})$, Osaka J. Math. 15 (3) (1978) 515-546.
[12] A.W. Knapp, Representation Theory of Semisimple Groups, Princeton Math. Ser. 36, Princeton Univ. Press, Princeton, NJ, 1986.
[13] H.B. Lawson, M.L. Michelsohn, Spin Geometry, Princeton University Press, Princeton, NJ, 1989.
[14] A. Trautman, The Dirac operator on hypersurfaces, Acta Phys. Polonica B 26 (7) (1995) 1283-1310.

[^0]: E-mail address: homma@gm.math.waseda.ac.jp (Y. Homma).

