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Abstract

We give decompositions of the spinor-valued and the Clifford algebra-valued harmonic poly-
nomials onRn. In order to do so, we consider some differential complexes and show that these
are exact. As a corollary, we have Poincaré lemma for harmonic polynomials. Besides, we prove
that each component of the decompositions is an irreducible representation space with respect to
Spin(n). © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Spherical harmonic polynomials or spherical harmonics as building blocks for analysis
on the sphere are traditionally an indispensable tool in mathematical physics. Recently, the
interest was shifted from functions space on the sphere to spaces of sections of natural bun-
dles. These spaces are representation spaces ofSpin(n) and their irreducible components are
often given by polynomial solutions of invariant differential operators. For example, spaces
of spinor-valued functions on the sphere are spaces of the so-called spherical monogenics.
They are spinor-valued polynomial solutions of the Dirac equations onRn [6,8,10,14]. The
Clifford algebra-valued fields and other examples are studied in [4,5,7–9,11]. In this paper,
we give a new approach to analyze the Clifford algebra-valued or the exterior algebra-valued
fields on the sphere.

The space of functions onSn−1 is isomorphic to the space of harmonic polynomials on
Rn. Similarly, we can regard the sections of the spinor bundle (resp. the Clifford bundle)
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as the spinor-valued (resp. the Clifford algebra-valued) harmonic polynomials. LetHq be
the space of the harmonic polynomials with degreeq on Rn. We consider

∑
Hq ⊗ Wn

and
∑
Hq ⊗ Cln, whereWn is the space of spinors andCln is the Clifford algebra. Traut-

man [14] gives a geometrical decomposition ofHq ⊗Wn by using the Dirac operatorD
and the algebraic operatorx, where the important tool to analyzeHq ⊗Wn is the spinor
complex(H ∗ ⊗ Wn,D). We consider an analogue of the spinor complex for the Clif-
ford algebra-valued harmonic polynomials. SinceCln is isomorphic to the exterior algebra∑
Λ
p

C(R
n), we use the differential operators d and d∗ instead of the Dirac operator and

have the de Rham complex(H ∗ ⊗ Λ∗
C(R

n),d) for harmonic polynomials. To show the
exactness of this complex is more complicated than the spinor case. So we give a geometric
decomposition ofHq ⊗ΛpC(Rn) first. Then we have the exactness of the de Rham complex
for harmonic polynomials. Since the operator d and d∗ are invariant operators, we prove
that each component of our decompositions is irreducible with respect toSpin(n).

Sections 2 and 3 are preliminaries. In Section 2, we describe the Clifford algebra and some
representations ofSpin(n). In Section 3, we have the Clifford bundle and the spinor bundle on
the sphere and give trivializations of these bundles. Then, we can regard the sections of these
bundle as the spinor-valued and the Clifford algebra-valued harmonic polynomials onRn.
In Section 4, we present Trautman’s theory for the spinor-valued harmonic polynomials.
Section 5 is the main of this paper. We study the Clifford algebra-valued or the exterior
algebra-valued harmonic polynomials. We have the differential operators d and d∗ and the
algebraic operatorsi(x) and−x∧ for them. By using these operators, we decomposeHq ⊗
Λ
p

C(R
n) and show that the de Rham complex for harmonic polynomials is exact. In Section

6, we present some results for the representation of the Lie algebraspin(n)⊗C ' so(n,C)
by using the Clifford algebra. In Section 7, we verify that our geometrical decompositions
correspond to the irreducible ones with respect toSpin(n).

2. The Clifford algebra and the spinor space

Let Rn be then-dimensional Euclidean space with the orthonormal basis{ek}nk=1. Then,
we have the complex Clifford algebraCln, where the relations among{ek}nk=1 are given by

ekel + elek = −2δkl. (2.1)

The following vector space isomorphism is well known:

Cln 3 ek1ek2 · · · ekp 7→ ek1 ∧ ek2 ∧ · · · ∧ ekp ∈
∑
p

Λ
p

C(R
n), (2.2)

where
∑
Λ
p

C(R
n) is the vector space of the complex exterior algebra associated toRn.

Besides,Cln has the decomposition to the even and the odd parts,Cln = Cl0n ⊕ Cl1n. Here
Clin is isomorphic to

∑
kΛ

2k+i
C (Rn).

We shall prepare two homomorphisms on the Clifford algebras [1]. First, we know that

the sub-algebraCl0n is isomorphic toCln−1 as an algebra by the mapj : Cln−1
'→Cl0n

which extends the mapj (ek) = enek for ek in Rn−1. Next, from the natural inclusion
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i : Rn−1 → Rn, we have its extension, the mapi : Cln−1 → Cln. Here, we remark that
the mapi coincides withj onCl0n−1.

Now, we investigate the spinor representation(∆n,Wn) and adjoint representation
(Adn,Cln) of Spin(n), whereSpin(n) is the spin group inCln. The spinor representa-
tion (∆n,Wn) is the restriction of an irreducibleCln-module toSpin(n). For n = 2m,
(∆2m,W2m) decomposes as the direct sum of two inequivalent irreducible representations
(∆+

2m,W
+
2m) and(∆−

2m,W
−
2m). If we restrict the spinor representation ofSpin(n) to its sub-

groupSpin(n− 1), we have spinor representations ofSpin(n− 1) [6]:

(∆±
2m|Spin(2m−1),W

±
2m) ' (∆2m−1,W2m−1), (2.3)

(∆2m+1|Spin(2m),W2m+1) ' (∆2m,W2m). (2.4)

These isomorphisms are important to trivialize the spinor bundle onSn−1.
The adjoint representation(Adn,Cln) is given by

Spin(n)× Cln 3 (g, ψ) 7→ Adn(g)ψ = gψg−1 ∈ Cln. (2.5)

Under the isomorphismCln ' ∑
Λ
p

C(R
n), the vector spaceΛpC(R

n) is invariant. Hence, so
is Clin for i = 0,1. We denote the representation ofSpin(n) onClin by Adin. The following
lemma is an analogue of (2.3) and (2.4) for the Clifford case.

Lemma 2.1. If we think of Spin(n−1) as a subgroup of Spin(n) by the map i, thenΛpC(R
n)

is isomorphic toΛpC(R
n−1) ⊕ Λ

p−1
C (Rn−1) as a representation space of Spin(n − 1). In

particular, Adin|Spin(n−1) is equivalent toAdn−1.

Proof. Forp = 2s, restricting the domain of the mapj toΛpC(R
n−1)⊕Λ

p−1
C (Rn−1), we

have an isomorphismj : ΛpC(R
n−1) ⊕ Λ

p−1
C (Rn−1) → Λ

p

C(R
n) as a vector space and

show that the following diagram commutes for anyh in Spin(n− 1):

(2.6)

To prove the casep = 2s + 1, we use another isomorphism,

enj : Cln−1 3 ψ 7→ en · j (ψ) ∈ Cl1n. (2.7)

If we replacej by enj on the above diagram (2.6), then we show that it also commutes.�

3. Homogeneous vector bundles on sphere

In this section, we shall describe homogeneous vector bundles onSn−1. We realizeSn−1

as an orbit space ofSpin(n) with base pointen in Rn. ThenSn−1 is a homogeneous space
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Spin(n)/Spin(n− 1) and its spin structure is given by

Spin(n) 3 g 7→ x := geng
−1 ∈ Sn−1 = Spin(n)

Spin(n− 1)
, (3.1)

where the total space isSpin(n).
We shall construct homogeneous vector bundles onSn−1. First, we consider the Clifford

bundleCl(Sn−1) := Spin(n) ×Adn−1 Cln−1. We know thatCl(Sn−1) is isomorphic to
the bundle of differential forms,

∑
A
p

C(S
n−1). Here,ApC(S

n−1) is the bundle ofp-forms
on Sn−1, which is the homogeneous vector bundle corresponding the representation on
Λ
p

C(R
n−1). The sections ofCl(Sn−1) are given by theSpin(n − 1)-equivariant functions

from Spin(n) to Cln−1:

C∞(Cl(Sn−1))= {Ψ : Spin(n) → Cln−1|Ψ (gh)

= h−1Ψ (g)h for h ∈ Spin(n− 1)}. (3.2)

If we define the action ofSpin(n) onC∞(Cl(Sn−1)) by (g0Ψ )(g) = Ψ (g−1
0 g) for g0 in

Spin(n), then we obtain a unitary representation ofSpin(n) onL2(Cl(Sn−1)).
We shall trivializeCl(Sn−1). From Lemma 2.1, we know thatCl(Sn−1) is isomorphic to

Spin(n)×Adin
Clin for i = 0,1 as a homogeneous vector bundle. Then, we have the bundle

isomorphisms,

Spin(n)×Adin
Clin 3 [g,Ψ ] 7→ (geng

−1, gΨg−1) ∈ Sn−1 × Clin. (3.3)

ForΨ (g) in C∞(Cl(Sn−1)), we define aClin-valued functionψ(x) on Sn−1 by ψ(x) :=
gΨ (g)g−1. Then we regardC∞(Cl(Sn−1)) as the space of theClin-valued functions on
Sn−1 and see that the action ofSpin(n) is given by

Spin(n)×C∞(Cl(Sn−1)) 3 (g0, ψ(x)) 7→ g0ψ(g
−1
0 xg0)g

−1
0 ∈ C∞(Cl(Sn−1)).

(3.4)

Remark 3.1. From Lemma 2.1, we can show that

A
p

C(S
n−1)⊕ A

p−1
C (Sn−1) ' Sn−1 ×Λ

p

C(R
n). (3.5)

Of course,ApC(S
n−1) is not always trivial.

We can also trivialize the spinor bundleS(Sn−1) := Spin(n)×∆n−1 Wn−1 by using (2.3)
and (2.4) [6]. It allow us to think of the spinor sections as the spinor-valued functions on
Sn−1. We see that the action ofSpin(n) on the spinor-valued functions is given by

Spin(n)× C∞(S(Sn−1)) 3 (g0, φ(x)) 7→ g0φ(g
−1
0 xg0) ∈ C∞(S(Sn−1)). (3.6)

From the above discussions, we deal with the trivial bundlesSn−1 × Cln andSn−1 ×Wn.
The space of functions onSn−1 is isomorphic to

∑
Hq as a representation space ofSpin(n),

where we denote the space of the harmonic polynomials with polynomial’s degreeq onRn

byHq . Considering the tensor representations onHq ⊗ Clin andHq ⊗Wn, we see that the
actions on these spaces are nothing else but (3.4) and (3.6), respectively.
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Proposition 3.2. We have the following isomorphisms as representation spaces of
Spin(n):
1. The Clifford case:

L2(Cl(Sn−1)) '
∑
q≥0

Hq ⊗ Clin for i = 0 or 1. (3.7)

2. The spinor case:

L2(S(S2m)) '
∑
q≥0

Hq ⊗W2m+1, L2(S(S2m−1)) '
∑
q≥0

Hq ⊗W±
2m. (3.8)

4. Spinor-valued harmonic polynomials

In this section, we give some results for the spinor-valued harmonic polynomials. LetSq

be the space of the polynomials with degreeq onRn. The spacesSq andHq have the inner
product defined by

(f (x), g(x))S =

∑

α

f αxα,
∑
β

gβxβ



S

:=
∑

α!f αḡα. (4.1)

This inner product satisfies that(∂/∂xkf, g)S = (f, xkg)S for any k. On the other hand,
there is an inner product(·, ·)W onWn such that(ekv,w)W = −(v, ekw)W for anyk. Then
we have the inner product(·, ·) on

∑
Sq ⊗ Wn and

∑
Hq ⊗ Wn such that(Dφ, φ′) =

−(φ, xφ′). Here D is the Dirac operator onRn defined by
∑
ek∂/∂xk andx is the Clifford

action by
∑
xkek.

Trautman [14] considers the following complex(H ∗ ⊗Wn,D) to analyze
∑
Hq ⊗Wn:

· · · D→Hq+1 ⊗Wn
D→Hq ⊗Wn

D→Hq−1 ⊗Wn
D→ · · · . (4.2)

If we have Dφ = 0 forφ ∈ Hq ⊗Wn, then we show that
∑
∂2/∂x2

k (xφ) = 0 and D(xφ) =
(n − q)φ. Therefore, this complex is exact and the spaceHq ⊗ Wn decomposes as the
orthogonal direct sum kerq D ⊕ x(kerq−1 D), where kerq D is the kernel of D onHq ⊗Wn.
In the following section, we try to apply this method to the Clifford algebra-valued harmonic
polynomials.

5. Clifford algebra-valued harmonic polynomials

In this section, we discuss a geometrical decomposition of theCln-valued harmonic poly-
nomials onRn. Because of the isomorphismCln ' ∑

Λp, we considerHq
p := Hq ⊗Λp

andSqp := Sq ⊗Λp. HereΛp denotesΛpC(R
n). We have the following algebraic operators

on
∑
Λp:

ek∧ : Λp → Λp+1, i(ek) : Λp → Λp−1, (5.1)
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wherei(ek) is the contraction byek. We can easily calculate the relations for{ek∧}k and
{i(el)}l ,

ek∧el∧ + el∧ek∧ = 0, (5.2)

i(ek)i(el)+ i(el)i(ek) = 0, (5.3)

ek∧i(el)+ i(el)ek∧ = δkl. (5.4)

We define some operators on
∑
Sq ⊗Λp as follows:

d :=
n∑
k=1

∂

∂xk
ek∧ : Sqp → S

q−1
p+1, (5.5)

d∗ := −
n∑
k=1

∂

∂xk
i(ek) : Sqp → S

q−1
p−1, (5.6)

x∧ :=
n∑
k=1

xkek∧ : Sqp → S
q+1
p+1, (5.7)

i(x) :=
n∑
k=1

xki(ek) : Sqp → S
q+1
p−1, (5.8)

h := dd∗ + d∗d = −
n∑
k=1

∂2

∂x2
k

: Sqp → S
q−2
p . (5.9)

We are concerned with the commutation relations among these operators.

Lemma 5.1. The above operators satisfy the following relations:

d2 = d∗2 = (x∧)2 = i(x)2 = 0, (5.10)

dx∧ + x∧d = 0, d∗i(x)+ i(x)d∗ = 0, (5.11)

di(x)+ i(x)d = r
∂

∂r
+ L, d∗x∧ + x∧d∗ = −r ∂

∂r
− n+ L, (5.12)

hx∧ − x∧h = −2d, hi(x)− i(x)h = 2d∗, (5.13)

hx∧i(x)− x∧i(x)h = 2x∧d∗ + 2i(x)d − 2r
∂

∂r
− 2L, (5.14)

hi(x)x∧ − i(x)x∧h = −2x∧d∗ − 2i(x)d − 2r
∂

∂r
− 2n− 2L, (5.15)

hd = dh, hd∗ = d∗h. (5.16)

Here we setr := |x| andL := ∑
ek∧i(ek). The operatorr∂/∂r (resp. L) measures the

polynomial’s degree(resp. the form’s degree). In other words, the operatorr∂/∂r (resp. L)
is q · id (resp. p · id) onSqp.
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Proof. We remark thatr∂/∂r is
∑
xk∂/∂xk and prove the lemma straightforwardly.�

Now, there is an inner product(·, ·)Λ on
∑
Λp such that(ek∧ψ,ψ ′)Λ = (ψ, i(ek)ψ

′)Λ for
anyk. Then, we obtain the tensor inner product(·, ·) on

∑
Sq ⊗Λp satisfying

(dψ,ψ ′) = (ψ, i(x)ψ ′), (d∗ψ,ψ ′) = −(ψ, x∧ψ ′). (5.17)

These relations imply that the kernel of d (resp. d∗) is orthogonal to the image ofi(x)
(resp.x∧).

We shall investigate the complexes(Hq−∗
∗ ,d) and(Hq−∗

n−∗ ,d∗), i.e.,

(H
q−∗
∗ ,d) : 0

d→H
q

0
d→H

q−1
1

d→ · · · d→H
q−n
n

d→0, (5.18)

(H
q−∗
n−∗ ,d

∗) : 0
d∗
→H

q
n

d∗
→H

q−1
n−1

d∗
→ · · · d∗

→H
q−n
0

d∗
→0. (5.19)

If we haveψ in Hq−p
p such that dψ = 0, then we have di(x)ψ = qψ from (5.12). But

i(x)ψ is not necessarily harmonic becausehi(x)ψ = (i(x)h + d∗)ψ = d∗ψ . Thus, to
prove the exactness of these complex is more complicated than the case of the spinors. So,
we discuss the following complexes for{Sqp} instead of{Hq

p }:

(S
q−∗
∗ ,d) : 0

d→S
q

0
d→S

q−1
1

d→ · · · d→S
q−n
n

d→0, (5.20)

(S
q−∗
n−∗ ,d

∗) : 0
d∗
→S

q
n

d∗
→S

q−1
n−1

d∗
→ · · · d∗

→S
q−n
0

d∗
→0, (5.21)

(S
q+∗
∗ , x∧) : 0

x∧→S
q

0
x∧→S

q+1
1

x∧→ · · · x∧→S
q+n
n

x∧→0, (5.22)

(S
q+∗
n−∗ , i(x)) : 0

i(x)→S
q
n
i(x)→S

q+1
n−1

i(x)→ · · · i(x)→S
q+n
0

i(x)→0. (5.23)

Proposition 5.2. The complexes(Sq−∗
∗ ,d), (Sq−∗

n−∗ ,d∗), (Sq+∗
∗ , x∧), and (Sq+∗

n−∗ , i(x)) are
exact. It follows that

dim kerqp d =
(
n+ q

p + q

) (
p + q − 1
p − 1

)
for p 6= 0, (5.24)

dim kerqp d∗ =
(
n+ q

p

) (
n+ q − p + 1

q

)
for p 6= n, (5.25)

dim kerq0 d = dim kerqn d∗ = 1, (5.26)

wherekerpq d (resp.kerpq d∗) is the kernel ofd (resp.d∗) onSpq .

Proof. The exactness follows from (5.12). Then we can calculate dimensions of kerp
q d and

kerpq d∗. For example, we have

dim kerqp d =
p−1∑
m=0

(−1)m−(p−1)dimS
p+q−m
m , (5.27)
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where

dimS
q
p = dimSq ⊗Λq =

(
n+ q − 1

q

) (
n

p

)
.

By the induction forp, we obtain (5.24). �

Corollary 5.3. We have decompositions ofSqp as follows:

S
q
p = kerqp d ⊕ kerqp i(x), (5.28)

S
q
p = kerqp d∗ ⊕ kerqp x∧, (5.29)

S
q
p = kerqp d ∩ kerqp d∗ ⊕ kerqp x∧ ⊕ kerqp i(x), (5.30)

wherekerqp d (resp.kerqp d∗) is orthogonal tokerqp i(x) (resp.kerqp x∧). The dimension of
kerqp d ∩ kerqp d∗ is given by

dim kerqp d ∩ kerqp d∗ = (n+ q − 1)!

(n− p − 1)!(p − 1)!q!

n+ 2q

(p + q)(n+ q − p)
. (5.31)

Proof. From Proposition 5.2, we have kerq
p i(x) = Imq−1

p+1 i(x). So kerqp d is orthogonal to

kerqp i(x). Besides, we have di(x)φ+ i(x)dφ = (p+q)φ forψ in Sqp and conclude thatSqp
decomposes as the orthogonal direct sum of kerq

p d and kerqp i(x). Similarly, we have the
second decomposition (5.29). To show the third decomposition, we consider the orthogonal
complement of kerqp d ∩ kerqp d∗:

(kerqp d ∩ kerqp d∗)⊥ = (kerqp d)⊥ + (kerqp d∗)⊥ = kerqp i(x)+ kerqp x∧. (5.32)

We shall prove that kerqp i(x)∩ kerqp x∧ is zero. We have the following relation betweenx∧
andi(x):

x∧i(x)+ i(x)x∧ = |x|2 = r2. (5.33)

Since the multiplicationr2 is injective onSqp, we show that kerqp i(x) ∩ kerqp x∧ = 0 and
hence kerqp i(x)+ kerqp x∧ = kerqp i(x)⊕ kerqp x∧. Then, we have the third decomposition
(5.30). The decomposition (5.30) allows us to calculate the dimension of kerq

p d ∩ kerqp d∗:

dim kerqp d ∩ kerqp d∗ = dim kerqp d + dim kerqp d∗ − dimS
q
p. (5.34)

From (5.24) and (5.25), we obtain dim kerq
p d ∩ kerqp d∗ as (5.31). �

Remark 5.4. The vector space kerqp i(x) is not always orthogonal to kerqp x∧.

We denote the vector space kerq
p d∩ kerqp d∗ by I qp , which is a subspace ofHq

p . We shall
decompose the vector spaces kerq

p x∧ and kerqp i(x) further. The exactness of(Sq+∗
∗ , x∧)
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means that kerqp x∧ = x∧(S
q−1
p−1). Then, from Corollary 5.3, we have

kerqp x∧ = x∧(S
q−1
p−1) = x∧(I

q−1
p−1)⊕ x∧(kerq−1

p+1 x∧)⊕ x∧(kerq−1
p−1 i(x))

= x∧I
q−1
p−1 ⊕ x∧(kerq−1

p−1 i(x)), (5.35)

where we remark that the mapx∧ is injective onI q−1
p−1 and kerq−1

p−1 i(x). In the same way,
we have

kerqp i(x) = i(x)I
q−1
p+1 ⊕ i(x)(kerq−1

p+1 x∧), (5.36)

and know that the mapi(x) is injective onI q−1
p+1 and kerq−1

p+1 x∧. It is easy to see thatx∧I
q−1
p−1

andi(x)I q−1
p+1 are subspaces ofHq

p and orthogonal to each other.

Since we have shown thatI qp ⊕ x∧I
q−1
p−1 ⊕ i(x)I q−1

p+1 is inHq
p , we consider the direct sum

of the remaining partsx∧(kerq−1
p−1 i(x)) andi(x)(kerq−1

p+1 x∧). Here,

x∧(kerq−1
p−1 i(x)) = x∧i(x)I

q−2
p ⊕ x∧i(x)(kerq−2

p x∧), (5.37)

i(x)(kerq−1
p+1 x∧) = i(x)x∧I

q−2
p ⊕ i(x)x∧(kerq−2

p i(x)). (5.38)

To get the harmonic part ofx∧(kerq−1
p−1 i(x))⊕i(x)(kerq−1

p+1 x∧), we use the decomposition of

S
q
p into harmonic partHq

p and its orthogonal complementr2S
q−2
p , i.e.,Sqp = H

q
p ⊕ r2S

q−2
p .

The complement partr2S
q−2
p has the decomposition

r2S
q−2
p = (x∧i(x)+ i(x)x∧)S

q−2
p

= r2I
q−2
p ⊕ x∧i(x)(kerq−2

p x∧)⊕ i(x)x∧(kerq−2
p i(x)). (5.39)

On the other hands, we have had the following decomposition ofS
q
p:

S
q
p = I

q
p ⊕ x∧I

q−1
p−1 ⊕ i(x)I

q−1
p+1 ⊕ x∧i(x)I

q−2
p ⊕ i(x)x∧I

q−2
p

⊕x∧i(x)(kerq−2
p x∧)⊕ i(x)x∧(kerq−2

p i(x)). (5.40)

Comparing the above two decompositions, we remark thatx∧i(x)I
q−2
p ⊕ i(x)x∧I

q−2
p can

be decomposed into the harmonic and the non-harmonic parts.

Lemma 5.5. The vector spacex∧i(x)I
q−2
p ⊕ i(x)x∧I

q−2
p has the decomposition

x∧i(x)I
q−2
p ⊕ i(x)x∧I

q−2
p = h

q−2
p I

q−2
p ⊕ r2I

q−2
p . (5.41)

Here, the maphqp is defined by

h
q
p := (q + n− p)x∧i(x)− (q + p)i(x)x∧ : Sqp → S

q+2
p . (5.42)

This maphqp is injective onI qp and its imagehqpI
q
p is inHq+2

p .
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Proof. Since the mapsi(x)x∧, i(x)x∧, andr2 are injective onI qp , we have

x∧i(x)I
q−2
p ⊕ i(x)x∧I

q−2
p = r2I

q−2
p ⊕ (ax∧i(x)+ bi(x)x∧)I

q−2
p , (5.43)

where we choose a pair of constants(a, b) such that(a, b) 6= λ(1,1) for anyλ in C. If we
put (a, b) = (q + n − p − 2,−(q + p − 2)), then we show from (5.14) and (5.15) that
(ai(x)x∧ + bx∧i(x))(I

q−2
p ) is harmonic. �

We are now in a position to describe a decomposition of the Clifford algebra-valued or
the exterior algebra-valued harmonic polynomials.

Theorem 5.6. The space of the exterior algebra-valued harmonic polynomials with
polynomial’s degree q and form’s degree p is decomposed as follows:

H
q
p = kerqp d ∩ kerqp d∗ ⊕ x∧(kerq−1

p−1 d ∩ kerq−1
p−1 d∗)⊕ i(x)(kerq−1

p+1 d ∩ kerq−1
p+1 d∗)

⊕hq−2
p (kerq−2

p d ∩ kerq−2
p d∗), (5.44)

where each component is orthogonal to others. Furthermore, we have

kerqp d ∩Hq
p = kerqp d ∩ kerqp d∗ ⊕ x∧(kerq−1

p−1 d ∩ kerq−1
p−1 d∗), (5.45)

kerqp d∗ ∩Hq
p = kerqp d ∩ kerqp d∗ ⊕ i(x)(kerq−1

p+1 d ∩ kerq−1
p+1 d∗). (5.46)

Proof. The orthogonal decomposition ofHq
p follows from discussions in this section. So

we shall prove (5.45) and (5.46). It is clear that kerq
p d∩Hq

p has the subspaceI qp ⊕x∧I
q−1
p−1.

Forφ in kerqp d∩Hq
p , we have d∗x∧φ + x∧d∗φ = (−q − n+ p)φ and show that d∗x∧φ is

in I qp andx∧d∗φ is in x∧I
q−1
p−1. Thus, we have kerqp d ∩Hq

p = I
q
p ⊕ x∧I

q−1
p+1. Similarly, we

can prove (5.46). �

This theorem implies the exactness of the complexes(H
q−∗
∗ ,d) and(Hq−∗

n−∗ ,d∗).

Corollary 5.7 (Poincaré lemma for harmonic polynomials onRn). The complexes(Hq−∗
∗ ,d)

and(Hq−∗
n−∗ ,d∗) are exact.

Proof. From Theorem 5.6, it follows that

kerqp d ∩Hq
p = I

q
p ⊕ x∧I

q−1
p−1, (5.47)

d(Hq+1
p−1) = d(i(x)I qp )⊕ d(hq−1

p−1I
q−1
p−1), (5.48)

where the map d is injective oni(x)I qp andhq−1
p−1I

q−1
p−1. We show that d(i(x)Ipq ) is a subspace

in I qp and dimI qp = dim d(i(x)I qp ). Therefore, the map d :i(x)I qp → I
q
p is isomorphism.

In the same way, we show that the map d :h
q−1
p−1I

q−1
p−1 → x∧I

q−1
p−1 is isomorphism. Then,

we conclude that(Hq−∗
∗ ,d) is exact. Similarly, we prove that(Hq−∗

n−∗ ,d∗) is exact. �
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6. Some representations ofSpin(n)Spin(n)Spin(n)

In this section, we present some results for the representation theory ofSpin(n) by using
the Clifford algebra [9,11–13]. Letg be the Lie algebraspin(n) = R{ekel}k<l in Cln with
bracket [a, b] = ab− ba and letgC be the complexification ofg, i.e.,gC = g⊗ C. Since
all the finite dimensional complex irreducible representations ofSpin(n) correspond to the
ones ofgC, we investigate the representations ofgC.

Definition 6.1. For 1≤ k ≤ [ 1
2n],

ak := 1
2(

√−1e2k−1 − e2k), a
†
k := 1

2(
√−1e2k−1 + e2k), (6.1)

ωk := a
†
k ak − 1

2
= −

√−1

2
e2k−1e2k, (6.2)

zk := x2k−1 + √−1x2k, z̄k := x2k−1 − √−1x2k. (6.3)

Whenn = 2m+ 1,

b := √−1e2m+1. (6.4)

We put [a, b]+ := ab+ baand rewrite the Clifford relation (2.1) as follows:

[ak, a
†
l ]+ = δkl, [b, b]+ = 2, (6.5)

[ak, al ]+ = [a†
k , a

†
l ]+ = [ak, b]+ = [a†

k , b]+ = 0. (6.6)

We choose the sub-algebraR{√−1ωk}k as a Cartan sub-algebra ofg and define a dual basis
{fk}k of {ωk}k byfl(ωk) = δkl. The irreducible finite dimensional representations ofgC are
parameterized by the dominant integral weights. The weightλ = ∑m

k=1skfk is dominant
integral if and only ifs = (s1, . . . , sm) satisfies that

s1 ≥ · · · sm−1 ≥ |sm|, n = 2m, (6.7)

s1 ≥ · · · sm−1 ≥ sm ≥ 0, n = 2m+ 1, (6.8)

wheres is inZm orZm+(1
2, . . . ,

1
2). We denote the weightλ = ∑

skfk bys = (s1, . . . , sm),
and a string ofj k’s for k in Z ∪ 1

2Z by kj . For example,((3
2)p, (

1
2)m−p) is the weight

whose firstp components are32 and others are12. Besides, we denote the representation
space corresponding tos = (s1, . . . , sm) by V (s1, . . . , sm).

We shall present some representations ofg. First, the space of harmonic polynomialsHq

gives the irreducible representation space whose highest weight vector isz̄
q

1 with weight
(q,0m−1).

Next, the spinor spaceWn is given by{a†
k1

· · · a†
kj

|vac〉|1 ≤ k1 < · · · < kj ≤ m}, where

we defineak|vac〉 := 0 for anyk andb|vac〉 := |vac〉. ThenW+
2m (resp.W−

2m) gives the

irreducible representation space whose highest vector isa
†
1 · · · a†

m|vac〉 with weight((1
2)m)
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(resp.a†
1 · · · a†

m−1|vac〉 with weight((1
2)m−1,−1

2)) andW2m+1 does the one whose highest

weight vector isa†
1 · · · a†

m|vac〉 with weight((1
2)m).

Finally, we consider the space ofp-forms,Λp. Under the isomorphism
∑
Λp = Cln,

the action ofspin(n) is defined by ad(ekel)(φ) = ekelφ−φekel for φ inΛp. We define the
algebraic operatorω commuting with the action ofspin(n) by

ω : Λp 3 ψ 7→ 2mω1 · · ·ωmψ ∈ Λn−p. (6.9)

This operator is called the complex volume element and satisfies thatω2 = 1 andekω =
−ωek. We know that, for 0≤ p ≤ mexcept the case ofn = 2mandp = m,Λp is equivalent
to Λn−p by the operatorω and gives the irreducible representation space whose highest

weight vector isa†
1 · · · a†

p with weight(1p,0m−p). Forn = 2m andp = m,ω decomposes

Λm into ±1-eigenspaceΛm±. ThenΛm+ (resp.Λm−) has the highest weight vectora†
1 · · · a†

m

with weight(1m) (resp.a†
1 · · · a†

m−1am with weight(1m−1,−1)).

7. The irreducible decomposition ofHq ⊗ ClnHq ⊗ ClnHq ⊗ Cln

In this section, we show that our geometrical decompositions ofHq ⊗Λp are the irre-
ducible decompositions with respect toSpin(n). For the spinor case, we can prove similar
results [2,3,8,14].

The actions ofgC onHq ⊗Λp are given by

gC × (Hq ⊗Λq) 3
(ekel

2
, ψ(x)

)
7→−xk ∂ψ

∂xl
+ xl

∂ψ

∂xk
+ ad

(ekel
2

)
ψ ∈ Hq ⊗Λq.

(7.1)

We see the following commutation relations between the above actions and the operators
given in Section 5.

Lemma 7.1. On
∑
Hq ⊗Λp, the operatorsd, d∗, x∧, andi(x) commute with the action of

gC. It follows that each component of the geometrical decomposition(5.44)is an invariant
subspace forgC.

Proof. We can prove the lemma by straightforward calculations. So we omit the proof.�

In general, if we have two irreducible highest weight representationsVλ andVλ′ whose
highest weight vectors arevλ andvλ′ , respectively, then we find an irreducible representation
Vλ+λ′ with highest vectorvλ ⊗ vλ′ in Vλ ⊗ Vλ′ . We apply this fact toHq ⊗Λp.

SinceHq = V (q,0m−1) and3p = V (1p,0m−p), we know thatV (q+1,1p−1,0m−p) is

an irreducible component ofHq⊗Λp, whose highest weight vector isψ0(x) := z̄
q

1a
†
1 · · · a†

p .
If we show that the vectorψ0(x) is in I qp , then we conclude thatV (q + 1,1p−1,0m−p) is
a subspace ofI qp . So we need the following formula of the operators d and d∗.
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Lemma 7.2. When we use the notation of Definition6.1,we rewrite the operatord andd∗

onHq ⊗Λp as follows:
1. For n = 2m,

d + d∗ = −2
√−1

m∑
k=1

(
ak
L ∂

∂zk
+ a

†L
k

∂

∂z̄k

)
, (7.2)

(−1)p(d − d∗) = −2
√−1

m∑
k=1

(
ak
R ∂

∂zk
+ a

†R
k

∂

∂z̄k

)
, (7.3)

whereakL (resp.akR) is defined byakLψ := ak · ψ (resp.akRψ := ψ · ak).
2. For n = 2m+ 1, we add

−√−1bL
∂

∂x2m+1
, −√−1bR

∂

∂x2m+1
(7.4)

to the right-hand sides of(7.2) and (7.3),respectively.

Proof. We know thateiL = ei∧ − i(ei) and eiR = (−1)p(ei∧ + i(ei)) and prove the
lemma. �

From this lemma, we can easily show that d(ψ0(x)) = d∗(ψ0(x)) = 0 and henceV (q+1,
1p−1,0m−p) is in I qp . Furthermore, by Weyl’s dimension formula, we have dimV (q + 1,
1p−1,0m−p) = dim I

q
p . Then, we conclude thatI qp gives the irreducible representation

whose highest weight vector isψ0(x) with weight(q + 1,1p−1,0m−p).

Proposition 7.3. The vector spaceI qp = kerqp d ∩ kerqp d∗ has the following description as
a representation space of Spin(n).
1. When1 ≤ p ≤ [ 1

2n] or whenn = 2m+ 1 andp = m,

kerqp d ∩ kerqp d∗ ' kerqn−p d ∩ kerqn−p d∗ ' V (q + 1,1p−1,0m−p). (7.5)

2. Whenn = 2m,

kerqm d ∩ kerqm d∗ ' V (q + 1,1m−1)⊕ V (q + 1,1m−2,−1). (7.6)

Now, Lemma 7.1 implies the isomorphisms as representation spaces,

x∧I
q
p ' i(x)I

q
p ' h

q
pI

q
p ' I

q
p . (7.7)

Therefore, we give a representation theoretical meaning to our geometrical decompositions
of Hq ⊗Λp.

Corollary 7.4. We decomposeHq ⊗Λp into irreducible components as follows:
1. Whenn = 2m and0 ≤ p ≤ m− 2 or whenn = 2m+ 1 and0 ≤ p ≤ m− 1,
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Hq ⊗Λp 'Hq ⊗Λn−p ' V (q,0m−1)⊗ V (1p,0m−p)
' V (q + 1,1p−1,0m−p)⊕ V (q,1p−2,0m−p+1)

⊕V (q,1p,0m−p−1)⊕ V (q − 1,1p−1,0m−p). (7.8)

2. Whenn = 2m,

Hq ⊗Λm−1 'Hq ⊗Λm+1 ' V (q,0m−1)⊗ V (1m−1,0)

' V (q + 1,1m−2,0)⊕ (V (q,1m−1)⊕ V (q,1m−2,−1))

⊕V (q,1m−3,0,0)⊕ V (q − 1,1m−2,0), (7.9)

Hq ⊗Λm ' V (q,0m−1)⊗ (V (1m)⊕ V (1m−1,−1))

' (V (q + 1,1m−1)⊕ V (q + 1,1m−2,−1))⊕ V (q,1m−2,0)

⊕V (q,1m−2,0)⊕(V (q−1,1m−1)⊕ V (q−1,1m−2,−1)). (7.10)

3. Whenn = 2m+ 1,

Hq ⊗Λm ' V (q,0m−1)⊗ V (1m) ' V (q + 1,1m−1)⊕ V (q,1m−2,0)

⊕ V (q,1m−1)⊕ V (q − 1,1m−1). (7.11)

Remark 7.5. By using the complex volume elementω, we decomposeHq ⊗ Λm± for
n = 2m:

Hq ⊗Λm± ' V (q,0m−1)⊗ V (1m−1,±1)

' V (q + 1,1m−2,±1)⊕ V (q,1m−2,0)⊕ V (q − 1,1m−2,∓1). (7.12)

Remark 7.6. From the above corollary and Proposition 3.2, we decomposeL2(A
p

C(S
n−1))

into irreducible components [9,11].
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