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Abstract

We give decompositions of the spinor-valued and the Clifford algebra-valued harmonic poly-
nomials onR”. In order to do so, we consider some differential complexes and show that these
are exact. As a corollary, we have Poincaré lemma for harmonic polynomials. Besides, we prove
that each component of the decompositions is an irreducible representation space with respect to
Spin(n). © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Spherical harmonic polynomials or spherical harmonics as building blocks for analysis
on the sphere are traditionally an indispensable tool in mathematical physics. Recently, the
interest was shifted from functions space on the sphere to spaces of sections of natural bun-
dles. These spaces are representation spa&gsrgt) and their irreducible components are
often given by polynomial solutions of invariant differential operators. For example, spaces
of spinor-valued functions on the sphere are spaces of the so-called spherical monogenics.
They are spinor-valued polynomial solutions of the Dirac equatiori®’d®,8,10,14]. The
Clifford algebra-valued fields and other examples are studied in [4,5,7-9,11]. In this paper,
we give a new approach to analyze the Clifford algebra-valued or the exterior algebra-valued
fields on the sphere.

The space of functions asi*1 is isomorphic to the space of harmonic polynomials on
R". Similarly, we can regard the sections of the spinor bundle (resp. the Clifford bundle)
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as the spinor-valued (resp. the Clifford algebra-valued) harmonic polynomial&4.be

the space of the harmonic polynomials with deggeen R”. We consider}_ H? @ W,
and)>_ H? ® Cl,, whereW, is the space of spinors a@l, is the Clifford algebra. Traut-
man [14] gives a geometrical decompositiondf ® W, by using the Dirac operatap

and the algebraic operater where the important tool to analyZz&€? ® W, is the spinor
complex(H* ® W,, D). We consider an analogue of the spinor complex for the Clif-
ford algebra-valued harmonic polynomials. Sitlg is isomorphic to the exterior algebra
> Aé(R”), we use the differential operators d antidstead of the Dirac operator and
have the de Rham compléX’* ® A (R"), d) for harmonic polynomials. To show the
exactness of this complex is more complicated than the spinor case. So we give a geometric
decomposition ofH? ® Aé(R”) first. Then we have the exactness of the de Rham complex
for harmonic polynomials. Since the operator d aridcace invariant operators, we prove
that each component of our decompositions is irreducible with resp&gtito:).

Sections 2 and 3 are preliminaries. In Section 2, we describe the Clifford algebra and some
representations &pinn). In Section 3, we have the Clifford bundle and the spinor bundle on
the sphere and give trivializations of these bundles. Then, we can regard the sections of these
bundle as the spinor-valued and the Clifford algebra-valued harmonic polynomigls on
In Section 4, we present Trautman'’s theory for the spinor-valued harmonic polynomials.
Section 5 is the main of this paper. We study the Clifford algebra-valued or the exterior
algebra-valued harmonic polynomials. We have the differential operators d*amtidhe
algebraic operatongx) and—x, for them. By using these operators, we decompéd$e
AE(R") and show that the de Rham complex for harmonic polynomials is exact. In Section
6, we present some results for the representation of the Lie alggiaka) @ C ~ so(n, C)
by using the Clifford algebra. In Section 7, we verify that our geometrical decompositions
correspond to the irreducible ones with respe@pin(n).

2. The Clifford algebra and the spinor space

LetR" be then-dimensional Euclidean space with the orthonormal b@gig_,. Then,
we have the complex Clifford algeb@i,,, where the relations amorig };_, are given by

ere] + erep = —268k. (2.2)
The following vector space isomorphism is well known:

Cly > exyery -k, > €xy Negy A+ Nek, € ZA@(R”), (2.2)
p

where )" Aé(R") is the vector space of the complex exterior algebra associatBd.to
BesidesCl, has the decomposition to the even and the odd paits— Cl,? ® Cl,}. Here
Cli, is isomorphic toy_, A% (R").

We shall prepare two homomorphisms on the Clifford algebras [1]. First, we know that
the sub-algebr&:l,? is isomorphic toCl,_1 as an algebra by the map: Cln,l—:>Cl,?
which extends the map(ex) = eqex for e, in R*~1. Next, from the natural inclusion
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i : R"~1 — R, we have its extension, the map Cl,_1 — Cl,. Here, we remark that
the mapi coincides withj onCI°_,.

Now, we investigate the spinor representatiafy,, W,,) and adjoint representation
(Ad,,, Cl,,) of Spinn), whereSpin(n) is the spin group irCl,,. The spinor representa-
tion (4,, W,) is the restriction of an irreducibl€l,,-module toSpin(n). Forn = 2m,

(A2, Way,,) decomposes as the direct sum of two inequivalent irreducible representations
(AL Wztn) and(4,, ., W, ). If we restrict the spinor representation$in») to its sub-

2m> 2m>

groupSpinn — 1), we have spinor representationsSginn — 1) [6]:
(A% Ispinzm—1)s War,) = (Azm—1, Wam—1), (2.3)
(A2my1lspinzmys Wam+1) = (Azm, Wam). (2.4)

These isomorphisms are important to trivialize the spinor bundIgoh.
The adjoint representatiaid,,, Cl,) is given by

Spinn) x Cl, 3 (g, ¥) = Ad, ()Y = g¥g~* € Cl,. (2.5)

Under the isomorphisi@il, ~ 3 Aé(R”), the vector spacﬁé(R”) is invariant. Hence, so
is Cli, for i = 0, 1. We denote the representationSgiinn) on Cl;, by Ad;,. The following
lemma is an analogue of (2.3) and (2.4) for the Clifford case.

Lemma 2.1. If we think of Spiz — 1) as a subgroup of Spin) by the map i, themé’(R”)
is isomorphic toAé(R”‘l) @ Aéfl(R”‘l) as a representation space of S@in- 1). In
particular, Adf1 Ispinr—1) is equivalent toAd,, 1.

Proof. For p = 2s, restricting the domain of the majpto A2 (R"~1) @ Aéfl(R"‘l), we
have an isomorphismi : AZ(R"™1) @ Aéfl(R”‘l) — AZ(R") as a vector space and
show that the following diagram commutes for anin Spinn — 1):

AR @ AT (R™) —o A(RY)
Adn_l(h)l J'Adn(h)
AZ(R™) @ AT (R™!) —o AL(R"). 2.6)
To prove the casp = 2s + 1, we use another isomorphism,
enj:Cly_13 VY > e, - j(¥) € CIL. (.7

If we replacej by e, j on the above diagram (2.6), then we show that it also commiutes.

3. Homogeneous vector bundles on sphere

In this section, we shall describe homogeneous vector bundl&sdnWe realizes” 1
as an orbit space @pin(z) with base poing, in R". Thens"~1 is a homogeneous space
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Spinn)/Spin(n — 1) and its spin structure is given by

: . -1 n—1 Splr(n)
Spinn)> g x:=0gg €8 "= m, 3.1)
where the total space &pinn).

We shall construct homogeneous vector bundleS"on. First, we consider the Clifford
bundle CI(s"~1) := Spinn) xad,_, Cl,—1. We know thatCI(s"~1) is isomorphic to
the bundle of differential formsy_ Aé(S”*l). Here,Aé(S”*l) is the bundle ofp-forms
on $"~1, which is the homogeneous vector bundle corresponding the representation on
Aé(R”*l). The sections o€I(5"~1) are given by theSpinn — 1)-equivariant functions
from Spin(n) to Cl,,_1:

C®(CI(S" 1)) = (¥ : Spinn) — Cl,_1|¥(gh)
=h"Yw(g)h forh e Spinn — 1)}. (3.2)
If we define the action o8pirn) on C*(CI(S"~1)) by (go¥)(g) = ¥(gy ~g) for go in
Spinn), then we obtain a unitary representatiorSgin) on L2(CI(S"~1)).
We shall trivializeCI(5"~1). From Lemma 2.1, we know th@¥ (5" 1) is isomorphic to

Spinn) x pgi Cli fori = 0, 1 as a homogeneous vector bundle. Then, we have the bundle
isomorphisms,

Spinin) x g Clb 3 [g, W] > (g&ig ™t gWeg ™ e S" 1 x CIL. (3.3)
For ¥ (g) in C*(CI(5"~1)), we define &Cli -valued functiony (x) on §"~* by v (x) :=

g¥(g)g~ L. Then we regard>°(CI(S"~1)) as the space of th@lﬁ,-valued functions on
5"~1 and see that the action 8pinn) is given by

Spinn) x C*(CI(S"™) 3 (g0, ¥(x)) = go¥ (g5 XW)gy ™ € C(CL(S"™H).
(3.4)

Remark 3.1. From Lemma 2.1, we can show that
ARS" @ ALTHS" Y = 5771 x ARRY). (3.5)
Oof course,Aé(S”*l) is not always trivial.
We can also trivialize the spinor bundbes” 1) := Spin(n) X a,_1 Wa—1 by using (2.3)

and (2.4) [6]. It allow us to think of the spinor sections as the spinor-valued functions on
$"~1. We see that the action &pin) on the spinor-valued functions is given by

Spinn) x C®(S(S"™1) 3 (g0, 9 (x)) F> god (g X) € CX(S(S" ™). (3.6)

From the above discussions, we deal with the trivial bunsifes x CI, ands"~1 x W,.
The space of functions a§f —* is isomorphic toy_ HY as a representation spacesSgiin(),
where we denote the space of the harmonic polynomials with polynomial’s dggree”
by H4. Considering the tensor representationgth® CI;, andH? ® W, we see that the
actions on these spaces are nothing else but (3.4) and (3.6), respectively.
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Proposition 3.2. We have the following isomorphisms as representation spaces of
Spinn):
1. The Clifford case

L*(Cl($" ) ~ Y HI®Cl, fori=00rl (3.7)
q=0

2. The spinor case

LAS(S?") = ) HI @ Wanr1.  LASS* ) =) HI@W,,. (38)
q>0 q>0

4. Spinor-valued harmonic polynomials

In this section, we give some results for the spinor-valued harmonic polynomial$? Let
be the space of the polynomials with deggeen R". The space$s? andH? have the inner
product defined by

(f(x), g(0))s = (Zf“xa, Zgﬂxﬁ) =) alfeg. (4.1)
o B

S

This inner product satisfies théd/dxy f, g)s = (f, xxg)s for anyk. On the other hand,
there is an inner produ¢t, -)y on W, such thatev, w)w = —(v, eyw)w for anyk. Then
we have the inner produgt, -) on Y S7 ® W, and>_ H? ® W, such that(D¢, ¢') =
—(¢, x¢"). Here D is the Dirac operator d¥" defined by>_ ¢;3/9x; andx is the Clifford
action by xxex.

Trautman [14] considers the following compléi{* ® W,,, D) to analyze) - H? @ W,:

. Burtgw,BHiew, B tew,2 ... (4.2)

If we have Dp = O for¢ € H ® W, then we show thal_ 92/9x2(x¢) = 0 and Dx¢) =

(n — q)¢. Therefore, this complex is exact and the spae® W, decomposes as the
orthogonal direct sum kéD @ x(ker’ "1 D), where kef D is the kernel of D orHH? ® W,,.

In the following section, we try to apply this method to the Clifford algebra-valued harmonic
polynomials.

5. Clifford algebra-valued harmonic polynomials

In this section, we discuss a geometrical decomposition dtthevalued harmonic poly-
nomials onR". Because of the isomorphisBI, >~ > A?, we considerﬂg = H7® AP
andsg = S7® AP. HereA? denotesAé(R”). We have the following algebraic operators
on)_ AP:

exn P AP > APTL i(ex) 1 AP —> AP7L, (5.1)
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wherei(e) is the contraction by,. We can easily calculate the relations fer .}, and
{i(en)}s,

exnein + einexn =0, (5.2)
i(ex)i(er) +i(ei(ex) =0, (5.3)
exni(er) +ilenexn = 8k (5.4)

We define some operators dn S¢ @ A” as follows:

n

0 -1
d:= dem L S§ - SU0 (5.5)
=1k
n a 1
d* = —Zgi(ek) 18§ SI7), (5.6)
=1k
- 1
Xp = Zxkelm : S;], — Sgil, (5.7)
k=1
n
i(x) =Y xier) : 8% — s9t1 (5.8)
p p—1
k=1
0 := dd* + d*d = _Z? LS9 8972 (5.9)
k=1""k

We are concerned with the commutation relations among these operators.

Lemma 5.1. The above operators satisfy the following relations

P =d?=@x)?=ix)?>=0, (5.10)
dxn +x,d=0, d*i(x) +i(x)d* =0, (5.11)
di(x)+i(x)d=r%+L, d*xn + x d* =—raa—r—n+L, (5.12)
Oxa —x 0 = —2d, Oi(x) —i(x)d = 2d*, (5.13)
Oxai(x) — xai (x)0 = 2x,d* + 2i (x)d — 2raa—r - 2L, (5.14)
Oi (x)xp — i () X0 = —2x,d* — 2i (x)d — zraa—r —2n — 2L, (5.15)
Od = dO, Od* = d*0. (5.16)
Here we set := |x| and L := ) exni(ex). The operatorrd/dr (resp. ) measures the

polynomial’s degreéresp. the form’s degr@eln other words, the operatord/dr (resp. L)
isq -id (resp p -id)on S}.
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Proof. We remark thatd/ar is Y _ x;d/0x; and prove the lemma straightforwardly. O

Now, there is an inner produ¢t -) 4 on>_ AP such thalexa, ¥')a = (¥, i(ex)¥’) a for
anyk. Then, we obtain the tensor inner prodgct) on >~ S? ® AP satisfying

dy, ¥ = (¥, i)y, d*y, ) = =¥, xa¥ ). (5.17)
These relations imply that the kernel of d (resp) & orthogonal to the image afx)
(resp.xp).

We shall investigate the complexedy *, d) and(H/", d*), i.e.,

HITF oy oS pg S prtS L S e S, (5.18)
(HIZF, d*) 09>fL29»f43jf9>...9>1ig‘”9»0. (5.19)

If we havey in H} ™" such that ¢/ = 0, then we haveidx)y = gy from (5.12). But

i (x)¥ is not necessarily harmonic becausax)y = (i(x)Od + d*)y = d*y. Thus, to

prove the exactness of these complex is more complicated than the case of the spinors. So,
we discuss the following complexes fgf7} instead of H,! }:

(597, dy: 0550859728 . Qg0 9o (5.20)
(57 d 05 sy S gt L gL (5.21)
(SIT*, x0) 1 05 sES gAY L gt s, (5.22)
(ST i(x)) - 02 g Y gl W ganig (5.23)

Proposition 5.2. The complexess? ™, d), (SI~F, d*), (SI7*, x»), and (S™7F, i (x)) are
exact. It follows that

dimkerf,d:("”)("’”_l) for p 0, (5.24)

pt+q p—1

dimke@d*=<n+q)<n+q_p+l> for p % n, (5.25)
p q

dimker d = dimker! d* = 1, (5.26)

whereker} d (resp.kery d*) is the kernel ofi (resp.d*) on S7.

Proof. The exactness follows from (5.12). Then we can calculate dimensions;od leerd
ker? d*. For example, we have

p—1
dimked d =) " (-1)"~ "~ Ddim s5™™", (5.27)

m=0
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where
dim 4 = dim 7 @ A7 = <”+‘1 - 1) (” )
q p
By the induction forp, we obtain (5.24). O

Corollary 5.3. We have decompositions §§f as follows

Si = ket d @ ker}i(x), (5.28)
5§ = ker}, d* @ ker} x,, (5.29)
S} = ker}, dnker] d* @ ker), x, & ker? i (x), (5.30)

whereker?, d (resp.ker?, d*) is orthogonal toker}, i (x) (resp.ker}, x,). The dimension of
ker? d N ker?, d* is given by

(n+q—1)! n+2q
m—p—Dp—-Dlg! (p+q)(n+q—p)

dimket!, d N ker}, d* = (5.31)

Proof. From Proposition 5.2, we have Kgir(x) = Im;’,ji(x). So kef, d is orthogonal to

ker? i (x). Besides, we haveitk)¢ + i (x)d¢ = (p +q)¢ for y in S and conclude thas}
decomposes as the orthogonal direct sum oj’) Keand keﬁ i(x). Similarly, we have the
second decomposition (5.29). To show the third decomposition, we consider the orthogonal
complement of kérd N ker?, d*:

(ker}, d Nkerd, d)* = (kery d)* + (kerd d*)*- = ker] i (x) + ker] x,. (5.32)

We shall prove that kéri (x) Nker x,, is zero. We have the following relation between
andi(x):

Xai () +i(0)xn = |x]% = r2 (5.33)

Since the multiplication? is injective onsS?, we show that kéfi(x) N ker, x, = 0 and
hence kef i (x) + ker} x, = ker’, i(x) & ke, x,.. Then, we have the third decomposition
(5.30). The decomposition (5.30) allows us to calculate the dimension ptikeker}, d*:

dim ket d N ker?, d* = dim ker, d + dim ker, d* — dim 7. (5.34)
From (5.24) and (5.25), we obtain dim Ked N ker?, d* as (5.31). O
Remark 5.4. The vector space k%li(x) is not always orthogonal to l(ﬁm.

We denote the vector space ket ker, d* by 777, which is a subspace @f;;. We shall
decompose the vector spaces’ker and kef, i (x) further. The exactness o8¢, x,,)
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means that kérx, = xA(SZj). Then, from Corollary 5.3, we have
kerh xn = xA(S)_ D= xA(Iq_l) @ x (ker! +1xA) ® xA(keﬂ 1i(x))
_xAIq h @xA(keI” 1i(x)), (5.35)

where we remark that the magp, is injective onlgj and kegj i(x). In the same way,
we have

ker)i(x) = i) ] @ ix)(ker T x0), (5.36)

and know that the majix) is injective onlgj and kegjj xn. Itis easy to see thawZ:i
andi(x)l,‘flll are subspaces @f; and orthogonal to each other.

Since we have shown thag eaxA 1 t®i(x)1? +1 is in H}}, we consider the direct sum
of the remaining partsA(ket” l(x)) andi ()c)(kel‘IJrl xp). Here,

x(ker!” Lit) = i) IE2 @ xpi(x) ke, x,0), (5.37)
z(x)(kerq+le) = l(x)xAIq e i(x)xA(ket‘,],_zi(x)). (5.38)

To get the harmonic part @fA(ker’[’,j i(x))eai(x)(kef[’,j xA), we use the decomposition of
$% into harmonic part{ and its orthogonal complemerits? 2, i.e.,S% = Hi & r259 2.
The complement partzsf,_2 has the decomposition

r2897% = (xpi (x) + i (X)x) 842
=210 % @ xni (x) (kerh 2 x0) @ i (x)xa(kerh 2i(x)). (5.39)

On the other hands, we have had the following decompositicﬂﬁ of
SZ:Iq @xAIq 1@1()6)1 +1@x/\l(x)1q @i(x)x/\lg_z
@xAz(x)(keﬁ, Xpn) @ z(x)xA(kel’II, i(x)). (5.40)

Comparing the above two decompositions, we remarkxt}\né(tx)ll‘?_2 D i(x)xn I,‘Z_z can
be decomposed into the harmonic and the non-harmonic parts.

Lemma 5.5. The vector spaceAi(x)I,‘f2 @ i(x)xAI,’f2 has the decomposition

XA I 2 @ i) 182 = h9 2182 @ 212, (5.41)
Here, the ma?, is defined by

h(f, =(q+n—pxi(x)—(q@+ p)i(x)xn: SZ — S?,Jrz. (5.42)

This maph?, is injective on/{ and its image:? 17 is in HY ™.
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Proof. Since the mapa(x)x,, i (x)x,, andr? are injective on'?, we have
. q—2 . q—2 279—2 . . q—2
XAl T, “@ix)xal, =1, @ (@x.i(x) + bix)x) I, 7, (5.43)

where we choose a pair of constaisb) such thata, b) # A(1, 1) foranyx in C. If we
put(a,b) = (g+n—p—2,—(q+ p— 2)), then we show from (5.14) and (5.15) that
@i(x)xn + bx/\i(x))(lgfz) is harmonic. O

We are now in a position to describe a decomposition of the Clifford algebra-valued or
the exterior algebra-valued harmonic polynomials.

Theorem 5.6. The space of the exterior algebra-valued harmonic polynomials with
polynomial’s degree q and form’s degree p is decomposed as follows
Hj =kerh d nker) d* & x, (ker) 3 dnker! 1 d*) @ i(x)(ker! 1 d Nker ] d")
®ht % (kert 2 d nkerh 2 d"), (5.44)

where each component is orthogonal to others. Furthermore, we have

ker) dn HY = ker) dnker) d* & x, (ker! T dNker! ] d"), (5.45)
ket d* N H}} = ker) d N ker} d* @ i (x) (ker) T d nker! ] d¥). (5.46)

Proof. The orthogonal decomposition &f; follows from discussions in this section. So
we shall prove (5.45) and (5.46). It is clear thatkeén H; has the subspady @ x, I[‘jj.
Forg inker, dn H}!, we have dx,¢ + x,d*¢ = (—g —n + p)¢ and show that th ¢ is
in 7} andx,d*¢ is in xAIZ:i. Thus, we have kérd N H}! = I & xAIg;i. Similarly, we
can prove (5.46). O

This theorem implies the exactness of the complé#gs ™, d) and(H?"", d*).

Corollary 5.7 (Poincaré lemma for harmonic polynomials®#). The complexed?! ", d)
and(HI~F, d*) are exact

n—sk>

Proof. From Theorem 5.6, it follows that

kethdN HY = I} @ xp 1077, (5.47)
d(HI = dii () 1f) @ dh 3197, (5.48)

where the map d is injective dix) 7] andh‘,ﬂjll‘fj. We show that ¢ (x) 1)) is a subspace

in 7 and dim/;} = dim d(i (x)1}}). Therefore, the map di(x)I; — I} is isomorphism.

In the same way, we show that the map m‘f}zillz:i — xAIZ:i is isomorphism. Then,

we conclude thatH! ™, d) is exact. Similarly, we prove thai?_*, d*) is exact. O

n—s
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6. Some representations oBpin(n)

In this section, we present some results for the representation thedpjrot) by using
the Clifford algebra [9,11-13]. Lef be the Lie algebrapin(n) = R{ere;}x<; in Cl, with
bracket f, b)] = ab — baand letgc be the complexification qof, i.e.,gc = g ® C. Since
all the finite dimensional complex irreducible representatiorSpifi(n) correspond to the
ones ofgc, we investigate the representationgef

Definition 6.1. For 1< k < [3n],

ar = 3(v~Llex—1— ex), a,j 1= 3(v—Lleg—1+ ex), (6.1)
1 V=1

wg = a,jak -5 == €212, (6.2)
2 2

2k i= xgp—1 + vV —Lxx, Tk = xop—1 — vV —1xo. (6.3)

Whenn = 2m + 1,

b= —leomsi1. (6.4)

We put [¢, b]+ := ab+ baand rewrite the Clifford relation (2.1) as follows:
[ac.a e =80 [b.b]4 =2, (6.5)

[ar. arls = [a; . a1+ = [ax. bl = [a] . B =O. (6.6)

We choose the sub-algetRd/— 1wy} as a Cartan sub-algebragé@nd define a dual basis
{ fi}x of {wr}x bY fi(wr) = 8. The irreducible finite dimensional representationg®ére
parameterized by the dominant integral weights. The weight > ;" ;s¢ fi is dominant

integral if and only ifs = (s1, ..., s,;) Satisfies that
§1> - Sm—1 > ISul, n=2m, (67)
S1> - Spm_1 =85, >0, n=2m+1, (6.8)

wheresisinZ™” orZ"+(3, ..., 3). We denote the weight= 3" s¢ fi bys = (51, ..., sm),
and a string ofj ks for k in Z U 3Z by k;. For example((3),, (3)m—,) is the weight
whose firstp components aré and others arc%. Besides, we denote the representation
space corresponding t0= (s1, ..., s») by V(s1,..., ).

We shall present some representationg. &irst, the space of harmonic polynomi#l$
gives the irreducible representation space whose highest weight veéﬁowim weight
(Qs Om—l)-

Next, the spinor spac#,, is given by{a,jLl . -a,:rj|vac)|1 <ky <--- <kj <m}, where
we defineqy |vac) := 0 for anyk andb|vac) := |vac). Then Wz*,'n (resp.W,,,) gives the

irreducible representation space whose highest veamir-is- a,I|vac) with weight((%)m)
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(respaI . alflwac) with weight((3),m—1, —3)) andWa,,41 does the one whose highest

weight vector iSaI . -a;nr|vac) with weight ((3),).-

Finally, we consider the space pfforms, A”. Under the isomorphist_ A? = Cl,,
the action okpin(n) is defined by atkre;) (@) = ere;p — pere; for ¢ in AP, We define the
algebraic operatap commuting with the action ofpin(n) by

w: AP >3y 2"01 oy € APTP. (6.9)

This operator is called the complex volume element and satisfiesfhat 1 andeyw =
—wey. We know that, forO< p < m exceptthe case af= 2m andp = m, A? is equivalent

to A"~ 7 by the operatow and gives the irreducible representation space whose highest
weight vector is:ir .- ~a[1: with weight(1,, 0,,— ). Forn = 2m andp = m, » decomposes

A™ into +1-eigenspacel’l. ThenA’! (resp.A™) has the highest weight vect@f e a,I

with weight (1,,,) (resp.aI . ~a:£_1am with weight (1,,—1, —1)).

7. The irreducible decomposition ofH? @ Cl,

In this section, we show that our geometrical decompositiol8® A? are the irre-
ducible decompositions with respect3pin). For the spinor case, we can prove similar
results [2,3,8,14].

The actions ofjic on H? ® AP are given by

ekel
2

gc x (H1 ® A7) > (ek—; 1//(x)) H—xk% +x1% +ad<

€ H1 @ A1,
0x; 0Xx ) 4 ©

(7.1)

We see the following commutation relations between the above actions and the operators
given in Section 5.

Lemma7.1. On)_ HY® AP, the operatorsl, d*, x,, andi (x) commute with the action of
gc. It follows that each component of the geometrical decompogifigid)is an invariant
subspace fogc.

Proof. We can prove the lemma by straightforward calculations. So we omit the proof.

In general, if we have two irreducible highest weight representatigrend V,, whose
highest weight vectors atg andv,,, respectively, then we find an irreducible representation
Vi+x With highest vectow, ® v,/ in Vi ® V. We apply this fact tadH? @ A?.

SinceH? = V(q, 0,,—1) andA? = V(1,,0,_,),weknowthat’' (g+1,1,_1, 0,,—p) iS
anirreducible component@f?® A”, whose highestweight vectonig(x) := z‘{aI x -a;,r.

If we show that the vectogo(x) is in I,‘{, then we conclude that(qg + 1,1,_1,0,_,) is
a subspace af{. So we need the following formula of the operators d ahd d
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Lemma 7.2. When we use the notation of Definitiéri, we rewrite the operatod andd*
on H? ® A” as follows

1. For n = 2m,
d+df = —2v—-1 § ( Li+ TLi) (7.2)
0Zk U 0z )’ '
» o Kk TR3> 73
(-1 d N_Ej(k —ral 73

wherea;t (resp.a;®) is defined by Ly = ay - ¥ (resp.a Xy == v - a).
2. Forn =2m + 1, we add

/1t _J—1pR 9

a962m+1 0xX2m+1

(7.4)
to the right-hand sides di7.2) and (7.3)respectively

Proof. We know thate;’ = e; — i(e;) ande;® = (=1)P(e; + i(e;)) and prove the
lemma. O

From this lemma, we can easily show thatg(x)) = d*(yo(x)) = 0and henc® (g +1,
1,-1,0n_p) isin 1,?. Furthermore, by Weyl's dimension formula, we have diigy + 1,
1,-1,0p,—p) = dim IZ. Then, we conclude thdt;’ gives the irreducible representation
whose highest weight vector i (x) with weight(g + 1, 1,_1, 0,,—p).

Proposition 7.3. The vector spacé! = ker?, dnker}, d* has the following description as
a representation space of Syir).
1. Whenl < p < [3n] orwhenn = 2m + 1and p = m,

kerf dnkerf d* ~ker!_ dnker!_ d*~V(g+11, 1,0, p). (7.5)
2. Whenn = 2m,
ket dn ket d* ~ V(g + 1, 1n_1) & V(g + 1 1y_2, —1). (7.6)

Now, Lemma 7.1 implies the isomorphisms as representation spaces,
XAl i) I ~nh1 ~ 1. (7.7)

Therefore, we give a representation theoretical meaning to our geometrical decompositions
of H1 ® AP,

Corollary 7.4. We decomposHY ® AP into irreducible components as follows
1. Whemn =2mandO0 < p <m —2orwhenn =2m +1and0 < p <m — 1,
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H1@ AP ~H1® AP >~V(q,0,-1) ® V(1,, 0n_p)
~V(g+11,-1,0u0—p) ® Vg, 1,2, 0n—ps1)
®V(q, 15,0 p-1)®V(g—11,_1,0,_p). (7.8)
2. Whem = 2m,

H1® A"t~ HI® A" = V(q,0,-1) ® V(11,0
= V(q + 11 1m—27 0) @ (V(CL 1m—l) @ V(‘], 1m—2» _1))
@V(qa lm73’ 0’ 0) @ V(q - 17 1141725 0)5 (79)

H?® A" >=V(q,0n-1) ® (V(Ln) & V(Lu-1, 1)
~>Vg+1Lly-)®V(g+11lu2 -1)@®Vig,1y—20)
&V(q, 1n—2,08(V(g—11y-1) ®V(g—1L 1,2 -1). (7.10)

3. Whemn = 2m + 1,

HI®@ A" ~ Vg, On-1)®V(Q,) ~ Vig+1,1,_1)@V(q, Ly_2, 0)

Remark 7.5. By using the complex volume element we decomposé?? ® A for
n=2m:

Hq ® AZ = V(qs Om—l) ® V(1n1—11 :l:l)
~V(@+11,2.£D) 8 V(. 1n208V(@—-11,2FD. (712

Remark 7.6. From the above corollary and Proposition 3.2, we decompéseé(snfl))
into irreducible components [9,11].
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